88 research outputs found

    Dommeravhør av barn Med fokus på bevisverdien av mindreåriges vitneutsagn

    Get PDF
    Vitnebeviset er i mange straffesaker det viktigste beviset. Tiltaltes og fornærmedes forklaringer er ofte avgjørende for om dommen ender med frifinnelse eller domfellelse. Jeg synes dette er spesielt interessant der den eller de fornærmede er barn. Blir det barna forteller lagt til grunn? Jeg har derfor sett nærmere på dommeravhør av barn. Problemstillingen for oppgaven er hvilken bevisverdi avhørene tillegges i retten. Jeg har valgt å undersøke strafferettspraksis fra 2014 hvor det ble avspilt dommeravhør for å se om avhørene ble tillagt avgjørende vekt eller ikke. Med denne oppgaven forsøker jeg å redegjøre for hvorfor noen dommeravhør blir tillagt avgjørende vekt, mens andre ikke blir det. Samtlige av sakene jeg undersøkte gjaldt vold eller seksuelle overgrep mot barn. I denne typer saker har det som regel ikke vært andre til stede, og det er sjeldent gode, håndfaste bevis. Derfor vil vitneforklaringene alltid være sentrale bevis. Oppgaven presenterer en rekke momenter retten mener styrker og svekker forklaringenes bevisverdi

    Impact-parameter dependence of K-shell ionisation in slow collisioons of near-symmetric relitivistic atoms

    Get PDF
    Abstract. The total K vacancy production probability of both collision partners in a heavy-ion-atom collision is calculated, assuming that two processes contribute, a single-collision process where 2po and 2pa vacancies are created by direct ionisation of the united atom and subsequently redistributed, and a double-collision process where a 2pa vacancy is created in the first collision and partially transferred in the second. The model used for the single-collision process is valid for slow collisions between partners of a combined charge greater than 70. Numerical results are presented for the (I, I) and (I, Ag) systems and show improved agreement with recent experiments. 1

    Analysis of OPM potentials for multiplet states of 3d transition metal atoms

    Full text link
    We apply the optimized effective potential method (OPM) to the multiplet energies of the 3dn^n transition metal atoms, where the orbital dependence of the energy functional with respect to orbital wave function is the single-configuration HF form. We find that the calculated OPM exchange potential can be represented by the following two forms. Firstly, the difference between OPM exchange potentials of the multiplet states can be approximated by the linear combination of the potentials derived from the Slater integrals F2(3d,3d)F^2({\rm 3d,3d}) and F4(3d,3d)F^4({\rm 3d,3d}) for the average energy of the configuration. Secondly, the OPM exchange potential can be expressed as the linear combination of the OPM exchange potentials of the single determinants.Comment: 15 pages, 6 figures, to be published in J. Phys.

    Parameterized optimized effective potential for the ground state of the atoms He through Xe

    Full text link
    Parameterized orbitals expressed in Slater-type basis obtained within the optimized effective potential framework as well as the parameterization of the potential are reported for the ground state of the atoms He through Xe. The total, kinetic, exchange and single particle energies are given for each atom.Comment: 47 pages, 1 figur

    Evaluation of a sub-kilometre NWP system in an Arctic fjord-valley system in winter

    Get PDF
    Terrain challenges the prediction of near-surface atmospheric conditions, even in kilometre-scale numerical weather prediction (NWP) models. In this study, the ALADIN-HIRLAM NWP system with 0.5 km horizontal grid spacing and an increased number of vertical levels is compared to the 2.5-km model system similar to the currently operational NWP system at the Norwegian Meteorological Institute. The impact of the increased resolution on the forecasts’ ability to represent boundary-layer processes is investigated for the period from 12 to 16 February 2018 in an Arctic fjord-valley system in the Svalbard archipelago. Model simulations are compared to a wide range of observations conducted during a field campaign. The model configuration with sub-kilometre grid spacing improves both the spatial structure and overall verification scores for the near-surface temperature and wind forecasts compared to the 2.5-km experiment. The subkilometre experiment successfully captures the wind channelling through the valley and the temperature field associated with it. In a situation of a cold-air pool development, the sub-kilometre experiment has a particularly high near-surface temperature bias at low elevations. The use of measurement campaign data, however, reveals some encouraging results, e.g. the sub-kilometre system has a more realistic vertical profile of temperature and wind speed, and the surface temperature sensitivity to the net surface energy is closer to the observations. This work demonstrates the potential of sub-kilometre NWP systems for forecasting weather in complex Arctic terrain, and also suggests that the increase in resolution needs to be accompanied with further development of other parts of the model system

    Parameterized optimized effective potential for atoms

    Full text link
    The optimized effective potential equations for atoms have been solved by parameterizing the potential. The expansion is tailored to fulfill the known asymptotic behavior of the effective potential at both short and long distances. Both single configuration and multi configuration trial wave functions are implemented. Applications to several atomic systems are presented improving previous works. The results here obtained are very close to those calculated in either the Hartree-Fock and the multi configurational Hartree-Fock framework.Comment: 8 pages, 3 figure

    Lamb shifts and hyperfine structure in 6Li+ and 7Li+: Theory and experiment

    Get PDF
    High-precision laser-resonance measurements accurate to ±0.5 MHz or better are reported for transitions among the 1s2s 3S1-1s2p 3PJ hyperfine manifolds for each of J=0, 1, and 2 in both Li+6 and Li+7. A detailed analysis of hyperfine structure is performed for both the S and P states, using newly calculated values for the magnetic dipole and electric quadrupole coupling constants, and the hyperfine shifts subtracted from the measurements. The resulting transition frequencies are then analyzed on three different levels. First, the isotope shifts in the fine-structure splittings are calculated from the relativistic reduced mass and recoil terms in the Breit interaction, and compared with experiment at the ±0.5-MHz level of accuracy. This comparison is particularly significant because J-independent theoretical uncertainties reduce through cancellation to the ±0.01-MHz level. Second, the isotope shifts in the full transition frequencies are used to deduce the difference in rms nuclear radii. The result is Rrms(6Li)-Rrms(7Li)=0.15±0.01 fm, in agreement with nuclear scattering data, but with substantially improved accuracy. Third, high-precision calculations of the low-order non-QED contributions to the transition frequencies are subtracted from the measurements to obtain the residual QED shifts. The isotope-averaged and spin-averaged effective shift for Li+7 is 37 429.40±0.39 MHz, with an additional uncertainty of ±1.5 MHz due to finite nuclear size corrections. The accuracy of 11 parts per million is the best two-electron Lamb shift measurement in the literature, and is comparable to the accuracies achieved in hydrogen. Theoretical contributions to the two-electron Lamb shift are discussed, including terms of order (αZ)4 recently obtained by Chen, Cheng, and Johnson [Phys. Rev. A 47, 3692 (1993)], and the results used to extract a QED shift for the 2 3S1 state. The result of 30 254±12 MHz is shown to be in good accord with theory (30 250±30 MHz) when two-electron corrections to the Bethe logarithm are taken into account by a 1/Z expansion method. © 1994 The American Physical Society
    corecore