33 research outputs found
Annual particle flux observations over a heterogeneous urban area
Long-term eddy covariance particle number flux measurements for the diameter range 6 nm to 5 ÎŒm were performed at the SMEAR III station over an urban area in Helsinki, Finland. The heterogeneity of the urban measurement location allowed us to study the effect of different land-use classes in different wind directions on the measured fluxes. The particle number fluxes were highest in the direction of a local road on weekdays, with a daytime median flux of 0.8&times;10<sup>9</sup> m<sup>&minus;2</sup> s<sup>&minus;1</sup>. The particle fluxes showed a clear dependence on traffic rates and on the mixing conditions of the boundary layer. The measurement footprint was estimated by the use of both numerical and analytical models. Using the crosswind integrated form of the footprint function, we estimated the emission factor for the mixed vehicle fleet, yielding a median particle number emission factor per vehicle of 3.0&times;10<sup>14</sup> # km<sup>&minus;1</sup>. Particle fluxes from the vegetated area were the lowest with daytime median fluxes below 0.2&times;10<sup>9</sup> m<sup>&minus;2</sup> s<sup>&minus;1</sup>. During weekends and nights, the particle fluxes were low from all land use sectors being in the order of 0.02â0.1&times;10<sup>9</sup> m<sup>&minus;2</sup> s<sup>&minus;1</sup>. On an annual scale the highest fluxes were measured in winter, when emissions from stationary combustion sources are also highest. Particle number fluxes were compared with the simultaneously measured CO<sub>2</sub> fluxes and similarity in their sources was distinguishable. For CO<sub>2</sub>, the median emission factor of vehicles was estimated to be 370 g km<sup>&minus;1</sup>
Herschel spectroscopic observations of the compact obscured nucleus in Zw 049.057
Context. The luminous infrared galaxy Zw 049.057 contains a compact obscured nucleus where a considerable amount of the galaxy's luminosity is generated. This nucleus contains a dusty environment that is rich in molecular gas. One approach to probing this kind of environment and to revealing what is hidden behind the dust is to study the rotational lines of molecules that couple well with the infrared radiation emitted by the dust. Aims. We probe the physical conditions in the core of Zw 049.057 and establish the nature of its nuclear power source (starburst or active galactic nucleus). Methods. We observed Zw 049.057 with the Photodetector Array Camera and Spectrometer (PACS) and the Spectral and Photometric Imaging Receiver (SPIRE) onboard the Herschel Space Observatory in rotational lines of H<inf>2</inf>O, H<inf>2</inf><sup>18</sup>O, OH, <sup>18</sup>OH, and [O I]. We modeled the unresolved core of the galaxy using a spherically symmetric radiative transfer code. To account for the different excitation requirements of the various molecular transitions, we use multiple components and different physical conditions. Results. We present the full high-resolution SPIRE FTS spectrum of Zw 049.057, along with relevant spectral scans in the PACS range. We find that a minimum of two different components (nuclear and extended) are required in order to account for the rich molecular line spectrum of Zw 049.057. The nuclear component has a radius of 10-30 pc, a very high infrared surface brightness (âŒ10<sup>14</sup>L<inf>â</inf>kpc<sup>-2</sup>), warm dust (T<inf>d</inf> > 100 K), and a very large H<inf>2</inf> column density (N<inf>H</inf><inf>2</inf> = 10<sup>24</sup>-10<sup>25</sup> cm<sup>-2</sup>). The modeling also indicates high nuclear H<inf>2</inf>O (âŒ5 Ă 10<sup>-6</sup>) and OH (âŒ4 Ă 10<sup>-6</sup>) abundances relative to H<inf>2</inf> as well as a low <sup>16</sup>O/<sup>18</sup>O-ratio of 50-100. We also find a prominent infall signature in the [O I] line. We tentatively detect a 500 km s<sup>-1</sup> outflow in the H<inf>2</inf>O 3<inf>13</inf> â 2<inf>02</inf> line. Conclusions. The high surface brightness of the core indicates the presence of either a buried active galactic nucleus or a very dense nuclear starburst. The estimated column density towards the core of Zw 049.057 indicates that it is Compton-thick, making a buried X-ray source difficult to detect even in hard X-rays. We discuss the elevated H<inf>2</inf>O abundance in the nucleus in the context of warm grain and gas-phase chemistry. The H<inf>2</inf>O abundance is comparable to that of other compact (ultra-)luminous infrared galaxies such as NGC 4418 and Arp 220 - and also to hot cores in the Milky Way. The enhancement of <sup>18</sup>O is a possible indicator that the nucleus of Zw 049.057 is in a similar evolutionary stage as the nuclei of Arp 220 - and more advanced than NGC 4418. We discuss the origin of the extreme nuclear gas concentration and note that the infalling gas detected in [O I] implies that the gas reservoir in the central region of Zw 049.057 is being replenished. If confirmed, the H<inf>2</inf>O outflow suggests that the nucleus is in a stage of rapid evolution
Recommended from our members
Overview of the international project on biogenic aerosol formation in the boreal forest (BIOFOR)
Aerosol formation and subsequent particle growth in ambient air have been frequently observed at a boreal forest site (SMEAR II station) in Southern Finland. The EU funded project BIOFOR (Biogenic aerosol formation in the boreal forest) has focused on: (a) determination of formation mechanisms of aerosol particles in the boreal forest site; (b) verification of emissions of secondary organic aerosols from the boreal forest site; and (c) quantification of the amount of condensable vapours produced in photochemical reactions of biogenic volatile organic compounds (BVOC) leading to aerosol formation. The approach of the project was to combine the continuous measurements with a number of intensive field studies. These field studies were organised in three periods, two of which were during the most intense particle production season and one during a non-event season. Although the exact formation route for 3 nm particles remains unclear, the results can be summarised as follows: Nucleation was always connected to Arctic or Polar air advecting over the site, giving conditions for a stable nocturnal boundary layer followed by a rapid formation and growth of a turbulent convective mixed layer closely followed by formation of new particles. The nucleation seems to occur in the mixed layer or entrainment zone. However two more prerequisites seem to be necessary. A certain threshold of high enough sulphuric acid and ammonia concentrations is probably needed as the number of newly formed particles was correlated with the product of the sulphuric acid production and the ammonia concentrations. No such correlation was found with the oxidation products of terpenes. The condensation sink, i.e., effective particle area, is probably of importance as no nucleation was observed at high values of the condensation sink. From measurement of the hygroscopic properties of the nucleation particles it was found that inorganic compounds and hygroscopic organic compounds contributed both to the particle growth during daytime while at night time organic compounds dominated. Emissions rates for several gaseous compounds was determined. Using four independent ways to estimate the amount of the condensable vapour needed for observed growth of aerosol particles we get an estimate of 2â10Ă107 vapour molecules cmâ3. The estimations for source rate give 7.5â11Ă104 cmâ3 sâ1. These results lead to the following conclusions: The most probable formation mechanism is ternary nucleation (water-sulphuric acid-ammonia). After nucleation, growth into observable sizes (~3 nm) is required before new particles appear. The major part of this growth is probably due to condensation of organic vapours. However, there is lack of direct proof of this phenomenon because the composition of 1â5 nm size particles is extremely difficult to determine using the present state-of-art instrumentation
Recommended from our members
Overview of the international project on biogenic aerosol formation in the boreal forest (BIOFOR)
Aerosol formation and subsequent particle growth in ambient air have been frequently observed at a boreal forest site (SMEAR II station) in Southern Finland. The EU funded project BIOFOR (Biogenic aerosol formation in the boreal forest) has focused on: (a) determination of formation mechanisms of aerosol particles in the boreal forest site; (b) verification of emissions of secondary organic aerosols from the boreal forest site; and (c) quantification of the amount of condensable vapours produced in photochemical reactions of biogenic volatile organic compounds (BVOC) leading to aerosol formation. The approach of the project was to combine the continuous measurements with a number of intensive field studies. These field studies were organised in three periods, two of which were during the most intense particle production season and one during a non-event season. Although the exact formation route for 3 nm particles remains unclear, the results can be summarised as follows: Nucleation was always connected to Arctic or Polar air advecting over the site, giving conditions for a stable nocturnal boundary layer followed by a rapid formation and growth of a turbulent convective mixed layer closely followed by formation of new particles. The nucleation seems to occur in the mixed layer or entrainment zone. However two more prerequisites seem to be necessary. A certain threshold of high enough sulphuric acid and ammonia concentrations is probably needed as the number of newly formed particles was correlated with the product of the sulphuric acid production and the ammonia concentrations. No such correlation was found with the oxidation products of terpenes. The condensation sink, i.e., effective particle area, is probably of importance as no nucleation was observed at high values of the condensation sink. From measurement of the hygroscopic properties of the nucleation particles it was found that inorganic compounds and hygroscopic organic compounds contributed both to the particle growth during daytime while at night time organic compounds dominated. Emissions rates for several gaseous compounds was determined. Using four independent ways to estimate the amount of the condensable vapour needed for observed growth of aerosol particles we get an estimate of 2â10Ă107 vapour molecules cmâ3. The estimations for source rate give 7.5â11Ă104 cmâ3 sâ1. These results lead to the following conclusions: The most probable formation mechanism is ternary nucleation (water-sulphuric acid-ammonia). After nucleation, growth into observable sizes (~3 nm) is required before new particles appear. The major part of this growth is probably due to condensation of organic vapours. However, there is lack of direct proof of this phenomenon because the composition of 1â5 nm size particles is extremely difficult to determine using the present state-of-art instrumentation
Recommended from our members
Overview of the international project on biogenic aerosol formation in the boreal forest (BIOFOR)
Aerosol formation and subsequent particle growth in ambient air have been frequently observed at a boreal forest site (SMEAR II station) in Southern Finland. The EU funded project BIOFOR (Biogenic aerosol formation in the boreal forest) has focused on: (a) determination of formation mechanisms of aerosol particles in the boreal forest site; (b) verification of emissions of secondary organic aerosols from the boreal forest site; and (c) quantification of the amount of condensable vapours produced in photochemical reactions of biogenic volatile organic compounds (BVOC) leading to aerosol formation. The approach of the project was to combine the continuous measurements with a number of intensive field studies. These field studies were organised in three periods, two of which were during the most intense particle production season and one during a non-event season. Although the exact formation route for 3 nm particles remains unclear, the results can be summarised as follows: Nucleation was always connected to Arctic or Polar air advecting over the site, giving conditions for a stable nocturnal boundary layer followed by a rapid formation and growth of a turbulent convective mixed layer closely followed by formation of new particles. The nucleation seems to occur in the mixed layer or entrainment zone. However two more prerequisites seem to be necessary. A certain threshold of high enough sulphuric acid and ammonia concentrations is probably needed as the number of newly formed particles was correlated with the product of the sulphuric acid production and the ammonia concentrations. No such correlation was found with the oxidation products of terpenes. The condensation sink, i.e., effective particle area, is probably of importance as no nucleation was observed at high values of the condensation sink. From measurement of the hygroscopic properties of the nucleation particles it was found that inorganic compounds and hygroscopic organic compounds contributed both to the particle growth during daytime while at night time organic compounds dominated. Emissions rates for several gaseous compounds was determined. Using four independent ways to estimate the amount of the condensable vapour needed for observed growth of aerosol particles we get an estimate of 2â10Ă107 vapour molecules cmâ3. The estimations for source rate give 7.5â11Ă104 cmâ3 sâ1. These results lead to the following conclusions: The most probable formation mechanism is ternary nucleation (water-sulphuric acid-ammonia). After nucleation, growth into observable sizes (~3 nm) is required before new particles appear. The major part of this growth is probably due to condensation of organic vapours. However, there is lack of direct proof of this phenomenon because the composition of 1â5 nm size particles is extremely difficult to determine using the present state-of-art instrumentation