48 research outputs found

    Potassium deficiency decreases the capacity for urea synthesis and markedly increases ammonia in rats

    Get PDF
    Our study provides novel findings of experimental hypokalemia reducing urea cycle functionality and thereby severely increasing plasma ammonia. This is pathophysiologically interesting because plasma ammonia increases during hypokalemia by a hitherto unknown mechanism, which may be particular important in relation to the unexplained link between hypokalemia and hepatic encephalopathy. Potassium deficiency decreases gene expression, protein synthesis, and growth. The urea cycle maintains body nitrogen homeostasis including removal of toxic ammonia. Hyperammonemia is an obligatory trait of liver failure, increasing the risk for hepatic encephalopathy, and hypokalemia is reported to increase ammonia. We aimed to clarify the effects of experimental hypokalemia on the in vivo capacity of the urea cycle, on the genes of the enzymes involved, and on ammonia concentrations. Female Wistar rats were fed a potassium-free diet for 13 days. Half of the rats were then potassium repleted. Both groups were compared with pair- and free-fed controls. The following were measured: in vivo capacity of urea-nitrogen synthesis (CUNS); gene expression (mRNA) of urea cycle enzymes; plasma potassium, sodium, and ammonia; intracellular potassium, sodium, and magnesium in liver, kidney, and muscle tissues; and liver sodium/potassium pumps. Liver histology was assessed. The diet induced hypokalemia of 1.9 ± 0.4 mmol/L. Compared with pair-fed controls, the in vivo CUNS was reduced by 34% (P < 0.01), gene expression of argininosuccinate synthetase 1 (ASS1) was decreased by 33% (P < 0.05), and plasma ammonia concentrations were eightfold elevated (P < 0.001). Kidney and muscle tissue potassium contents were markedly decreased but unchanged in liver tissue. Protein expressions of liver sodium/potassium pumps were unchanged. Repletion of potassium reverted all the changes. Hypokalemia decreased the capacity for urea synthesis via gene effects. The intervention led to marked hyperammonemia, quantitatively explainable by the compromised urea cycle. Our findings motivate clinical studies of patients with liver disease

    Characteristics of fast voluntary and electrically evoked isometric knee extensions during 56 days of bed rest with and without exercise countermeasure

    Get PDF
    The contractile characteristics of fast voluntary and electrically evoked unilateral isometric knee extensions were followed in 16 healthy men during 56 days of horizontal bed rest and assessed at bed rest days 4, 7, 10, 17, 24, 38 and 56. Subjects were randomized to either an inactive control group (Ctrl, n = 8) or a resistive vibration exercise countermeasure group (RVE, n = 8). No changes were observed in neural activation, indicated by the amplitude of the surface electromyogram, or the initial rate of voluntary torque development in either group during bed rest. In contrast, for Ctrl, the force oscillation amplitude at 10 Hz stimulation increased by 48% (P < 0.01), the time to reach peak torque at 300 Hz stimulation decreased by 7% (P < 0.01), and the half relaxation time at 150 Hz stimulation tended to be slightly reduced by 3% (P = 0.056) after 56 days of bed rest. No changes were observed for RVE. Torque production at 10 Hz stimulation relative to maximal (150 Hz) stimulation was increased after bed rest for both Ctrl (15%; P < 0.05) and RVE (41%; P < 0.05). In conclusion, bed rest without exercise countermeasure resulted in intrinsic speed properties of a faster knee extensor group, which may have partly contributed to the preserved ability to perform fast voluntary contractions. The changes in intrinsic contractile properties were prevented by resistive vibration exercise, and voluntary motor performance remained unaltered for RVE subjects as well

    Osteo-cise: Strong Bones for Life: protocol for a community-based randomised controlled trial of a multi-modal exercise and osteoporosis education program for older adults at risk of falls and fractures

    Get PDF
    Background : Osteoporosis affects over 220 million people worldwide, and currently there is no \u27cure\u27 for the disease. Thus, there is a need to develop evidence-based, safe and acceptable prevention strategies at the population level that target multiple risk factors for fragility fractures to reduce the health and economic burden of the condition. Methods : The \u27Osteo-cise: Strong Bones for Life\u27 study will investigate the effectiveness and feasibility of a multi-component targeted exercise, osteoporosis education/awareness and behavioural change program for improving bone health and muscle function, and reducing falls risk in community-dwelling older adults at an increased risk of fracture. Men and women aged 60 years or above will participate in an 18-month randomised controlled trial comprising a 12-month structured and supervised community-based program and a 6-month \u27research to practise\u27 translational phase. Participants will be randomly assigned to either the \u27Osteo-cise\u27 intervention or a self-management control group. The intervention will comprise a multi-modal exercise program incorporating high velocity progressive resistance training, moderate impact weight-bearing exercise and high challenging balance exercises performed three times weekly at local community-based fitness centres. A behavioural change program will be used to enhance exercise adoption and adherence to the program. Community-based osteoporosis education seminars will be conducted to improve participant knowledge and understanding of the risk factors and preventative measures for osteoporosis, falls and fractures. The primary outcomes measures, to be collected at baseline, 6, 12, and 18 months, will include DXA-derived hip and spine bone mineral density measurements and functional muscle power (timed stair-climb test). Secondary outcomes measures include: MRI-assessed distal femur and proximal tibia trabecular bone micro-architecture, lower limb and back maximal muscle strength, balance and function (four square step test, functional reach test, timed up-and-go test and 30-second sit-to-stand), falls incidence and health-related quality of life. Cost-effectiveness will also be assessed. Discussion : The findings from the Osteo-cise: Strong Bones for Life study will provide new information on the efficacy of a targeted multi-modal community-based exercise program incorporating high velocity resistance training, together with an osteoporosis education and behavioural change program for improving multiple risk factors for falls and fracture in older adults at risk of fragility fracture.<br /

    Effectiveness of dual-task functional power training for preventing falls in older people: Study protocol for a cluster randomised controlled trial

    Get PDF
    Background: Falls are a major public health concern with at least one third of people aged 65 years and over falling at least once per year, and half of these will fall repeatedly, which can lead to injury, pain, loss of function and independence, reduced quality of life and even death. Although the causes of falls are varied and complex, the age-related loss in muscle power has emerged as a useful predictor of disability and falls in older people. In this population, the requirements to produce explosive and rapid movements often occurs whilst simultaneously performing other attention-demanding cognitive or motor tasks, such as walking while talking or carrying an object. The primary aim of this study is to determine whether dual-task functional power training (DT-FPT) can reduce the rate of falls in community-dwelling older people. Methods/Design: The study design is an 18-month cluster randomised controlled trial in which 280 adults aged =65 years residing in retirement villages, who are at increased risk of falling, will be randomly allocated to: 1) an exercise programme involving DT-FPT, or 2) a usual care control group. The intervention is divided into 3 distinct phases: 6 months of supervised DT-FPT, a 6-month 'step down' maintenance programme, and a 6-month follow-up. The primary outcome will be the number of falls after 6, 12 and 18 months. Secondary outcomes will include: lower extremity muscle power and strength, grip strength, functional assessments of gait, reaction time and dynamic balance under single- and dual-task conditions, activities of daily living, quality of life, cognitive function and falls-related self-efficacy. We will also evaluate the cost-effectiveness of the programme for preventing falls. Discussion: The study offers a novel approach that may guide the development and implementation of future community-based falls prevention programmes that specifically focus on optimising muscle power and dual-task performance to reduce falls risk under 'real life' conditions in older adults. In addition, the 'step down' programme will provide new information about the efficacy of a less intensive maintenance programme for reducing the risk of falls over an extended period. Trial registration: Australian New Zealand Clinical Trials Registry: ACTRN12613001161718. Date registered 23 October 2013

    Effects of Albumin Treatment on Systemic and Portal Hemodynamics and Systemic Inflammation in Patients With Decompensated Cirrhosis

    Get PDF
    BACKGROUND & AIMS: We investigated the effect of albumin treatment (20% solution) on hypoalbuminemia, cardiocirculatory dysfunction, portal hypertension, and systemic inflammation in patients with decompensated cirrhosis with and without bacterial infections. METHODS: We performed a prospective study to assess the effects of long-term (12 weeks) treatment with low doses of albumin (1 g/kg body weight every 2 weeks), and high doses (1.5 g/kg every week), on serum albumin, plasma renin, cardiocirculatory function, portal pressure, and plasma levels of cytokines, collecting data from 18 patients without bacterial infections (the Pilot-PRECIOSA study). We also assessed the effect of short-term (1 week) treatment with antibiotics alone vs. the combination of albumin plus antibiotics (1.5 g/kg on day 1 and 1 g/kg at day 3) on plasma levels of cytokines in biobanked samples from 78 patients with bacterial infections included in a randomized controlled trial (INFECIR-2 study). RESULTS: Circulatory dysfunction and systemic inflammation were extremely unstable in many patients included in the pilot-PRECIOSA study; these patients had intense and reversible peaks in plasma levels of renin and interleukin 6 (IL6). Long-term high-dose albumin but not low-dose albumin was associated with normalization of serum level of albumin, improved stability of the circulation and left ventricular function, and reduced plasma levels of cytokines (IL6, GCSF, IL1RN, and VEGF) without significant changes in portal pressure. The immune-modulatory effects of albumin observed in the Pilot-PRECIOSA study were confirmed in the INFECIR-2 study. In this study, patients given albumin had significant reductions in plasma levels of cytokines. CONCLUSIONS: In an analysis of data from 2 trials (pilot-PRECIOSA study and INFECIR-2 study) we found that albumin treatment reduces systemic inflammation and cardiocirculatory dysfunction in patients with decompensated cirrhosis. These effects might be responsible for the beneficial effects of albumin therapy on outcomes of patients with decompensated cirrhosis. ClinicalTrials.gov no: NCT00968695 and NCT03451292

    Anaerobic performance in masters athletes

    Full text link

    Lactulose, rifaximin or branched chain amino acids for hepatic encephalopathy: what is the evidence?

    No full text
    Hepatic encephalopathy (HE) is a serious complication of acute and chronic liver disease associated with severe morbidity and mortality. We performed updated random effects meta-analyses to evaluate the evidence for non-absorbable disaccharides (lactulose and lactitol), rifaximin and branched chain amino acids (BCAA). A meta-analysis of randomized trials showed that, compared with placebo or no intervention, non-absorbable disaccharides have beneficial effects on HE manifestations and prevention of HE episodes. The addition of rifaximin to non-absorbable disaccharides versus rifaximin alone was more beneficial than non-absorbable disaccharides used alone on both outcome measures. Likewise, a meta-analysis of randomised controlled trials found that oral BCAA supplements have beneficial effects on manifestations of HE compared with control supplements. The effect was found in a variety of clinical settings. No convincing effects of intravenous BCAA for episodic HE were identified. In conclusion, evidence-based treatment recommendations for patients with HE should include non-absorbable disaccharides combined with rifaximin or BCAA. Additional evidence is needed to evaluate the effect of combining all three interventions
    corecore