7 research outputs found

    Erosion consequences on beach functions along the Maresme coast (NW Mediterranean, Spain)

    Get PDF
    A methodology to analyse the influence of erosion on beach functions at a regional scale is presented. The method considers erosion hazards at different timescales and assesses consequences by evaluating impacts on recreation and protection functions. To provide useful information to decision makers for managing these functions, hazard and consequences are integrated at the municipal level within a risk matrix. This methodology is applied at the Maresme, a 45-km sandy coast situated northward of Barcelona, which supports a strong urban and infrastructure development as well as an intensive beach recreational use. Obtained results indicate differentiated erosion implications along the region, depending on the management target considered. Thus, southern municipalities are more prone to erosion affecting the protection function of the beach and leisure use by the local population, whereas erosion will have a greater effect on foreign tourism in the northern municipalities. These results highlight the necessity to employ an articulated erosion risk assessment focusing on specific targets depending on the site in question. This methodology can help coastal managers to adopt tailored measures to manage erosion impacts towards specific goals, in a more efficient and sustainable manner

    A multi-component flood risk assessment in the Maresme coast (NW Mediterranean)

    Get PDF
    Coastal regions are the areas most threatened by natural hazards, with floods being the most frequent and significant threat in terms of their induced impacts, and therefore, any management scheme requires their evaluation. In coastal areas, flooding is a hazard associated with various processes acting at different scales: coastal storms, flash floods, and sea level rise (SLR). In order to address the problem as a whole, this study presents a methodology to undertake a preliminary integrated risk assessment that determines the magnitude of the different flood processes (flash flood, marine storm, SLR) and their associated consequences, taking into account their temporal and spatial scales. The risk is quantified using specific indicators to assess the magnitude of the hazard (for each component) and the consequences in a common scale. This allows for a robust comparison of the spatial risk distribution along the coast in order to identify both the areas at greatest risk and the risk components that have the greatest impact. This methodology is applied on the Maresme coast (NW Mediterranean, Spain), which can be considered representative of developed areas of the Spanish Mediterranean coast. The results obtained characterise this coastline as an area of relatively low overall risk, although some hot spots have been identified with high-risk values, with flash flooding being the principal risk process

    Variability in storm climate along the Gulf of Cadiz: the role of large scale atmospheric forcing and implications to coastal hazards

    Get PDF
    In the context of increased coastal hazards due to variability in storminess patterns, the danger of coastal damages and/or morphological changes is related to the sum of sea level conditions, storm surge, maximum wave height and run up values. In order to better understand the physical processes that cause the variability of the above parameters a 44 years reanalysis record (HIPOCAS) was used. The HIPOCAS time-series was validated with real wave and sea-level data using linear and vector correlation methods. In the present work changes in the magnitude, duration, frequency and approach direction of the Atlantic storms over the Gulf of Cadiz (SW Iberian Peninsula) were identified by computing various storm characteristics such as maximum wave height, total energy per storm wave direction and storm duration. The obtained time-series were compared with large-scale atmospheric indices such as the North Atlantic Oscillation (NAO) and the East Atlantic pattern. The results show a good correlation between negative NAO values and increased storminess over the entire Gulf of Cadiz. Furthermore, negative NAO values were correlated with high residual sea level values. Finally, a joint probability analysis of storm and sea level analysis resulted in increased probabilities of the two events happening at the same time indicating higher vulnerability of the coast and increased coastal risks. The above results were compared with coastal inundation events that took place over the last winter seasons in the province of Cadiz.info:eu-repo/semantics/publishedVersio

    Differential Effects of Inflammation on Bone and Response to Biologics in Rheumatoid Arthritis and Spondyloarthritis

    No full text
    corecore