1,062 research outputs found

    Rapid quantification of low level polymorph content in a solid dose form using transmission Raman spectroscopy

    Get PDF
    This proof of concept study demonstrates the application of transmission Raman spectroscopy (TRS) to the non-invasive and non-destructive quantification of low levels (0.62-1.32% w/w) of an active pharmaceutical ingredient's polymorphic forms in a pharmaceutical formulation. Partial least squares calibration models were validated with independent validation samples resulting in prediction RMSEP values of 0.03-0.05% w/w and a limit of detection of 0.1-0.2% w/w. The study further demonstrates the ability of TRS to quantify all tablet constituents in one single measurement. By analysis of degraded stability samples, sole transformation between polymorphic forms was observed while excipient levels remained constant. Additionally, a beam enhancer device was used to enhance laser coupling to the sample, which allowed comparable prediction performance at 60 times faster rates (0.2 s) than in standard mode

    The California-Kepler survey. X. The radius gap as a function of stellar mass, metallicity, and age

    Get PDF
    In 2017, the California-Kepler Survey (CKS) published its first data release (DR1) of high-resolution optical spectra of 1305 planet hosts. Refined CKS planet radii revealed that small planets are bifurcated into two distinct populations, super-Earths (smaller than 1.5 R⊕) and sub-Neptunes (between 2.0 and 4.0 R⊕), with few planets in between (the "radius gap"). Several theoretical models of the radius gap predict variation with stellar mass, but testing these predictions is challenging with CKS DR1 due to its limited M⋆ range of 0.8–1.4 M⊙. Here we present CKS DR2 with 411 additional spectra and derived properties focusing on stars of 0.5–0.8 M⊙. We found that the radius gap follows Rp ∝ Pm with m = −0.10 ± 0.03, consistent with predictions of X-ray and ultraviolet- and core-powered mass-loss mechanisms. We found no evidence that m varies with M⋆. We observed a correlation between the average sub-Neptune size and M⋆. Over 0.5–1.4 M⊙, the average sub-Neptune grows from 2.1 to 2.6 R⊕, following RpMα{R}_{p}\propto {M}_{\star }^{\alpha } with α = 0.25 ± 0.03. In contrast, there is no detectable change for super-Earths. These M⋆–Rp trends suggest that protoplanetary disks can efficiently produce cores up to a threshold mass of Mc, which grows linearly with stellar mass according to Mc ≈ 10 M⊕(M⋆/M⊙). There is no significant correlation between sub-Neptune size and stellar metallicity (over −0.5 to +0.5 dex), suggesting a weak relationship between planet envelope opacity and stellar metallicity. Finally, there is no significant variation in sub-Neptune size with stellar age (over 1–10 Gyr), which suggests that the majority of envelope contraction concludes after ∼1 Gyr

    Escherichia coli induces apoptosis and proliferation of mammary cells

    Get PDF
    Mammary cell apoptosis and proliferation were assessed after injection of Escherichia coli into the left mammary quarters of six cows. Bacteriological analysis of foremilk samples revealed coliform infection in the injected quarters of four cows. Milk somatic cell counts increased in these quarters and peaked at 24 h after bacterial injection. Body temperature also increased, peaking at 12 h postinjection, The number of apoptotic cells was significantly higher in the mastitic tissue than in the uninfected control. Expression of Bax and interleukin-1 beta converting enzyme increased in the mastitic tissue at 24 h and 72 h postinfection, whereas Bcl-2 expression decreased at 24 h but did not differ significantly from the control at 72 h postinfection, Induction of matrix metalloproteinase-g, stromelysin-1 and urokinase-type plasminogen activator was also observed in the mastitic tissue. Moreover, cell proliferation increased in the infected tissue, These results demonstrate that Escherichia coli-induced mastitis promotes apoptosis and cell proliferation

    Ambipolar Electric Field and Potential in the Solar Wind Estimated from Electron Velocity Distribution Functions

    Get PDF
    The solar wind escapes from the solar corona and is accelerated, over a short distance, to its terminal velocity. The energy balance associated with this acceleration remains poorly understood. To quantify the global electrostatic contribution to the solar wind dynamics, we empirically estimate the ambipolar electric field (E∥) and potential (Φr,∞). We analyze electron velocity distribution functions (VDFs) measured in the near-Sun solar wind between 20.3 RS and 85.3 RS by the Parker Solar Probe. We test the predictions of two different solar wind models. Close to the Sun, the VDFs exhibit a suprathermal electron deficit in the sunward, magnetic-field-aligned part of phase space. We argue that the sunward deficit is a remnant of the electron cutoff predicted by collisionless exospheric models. This cutoff energy is directly linked to Φr,∞. Competing effects of E∥ and Coulomb collisions in the solar wind are addressed by the Steady Electron Runaway Model (SERM). In this model, electron phase space is separated into collisionally overdamped and underdamped regions. We assume that this boundary velocity at small pitch angles coincides with the strahl break-point energy, which allows us to calculate E∥. The obtained Φr,∞ and E∥ agree well with theoretical expectations. They decrease with radial distance as power-law functions with indices αΦ = −0.66 and αE = −1.69. We finally estimate the velocity gained by protons from electrostatic acceleration, which equals 77% calculated from the exospheric models, and 44% from the SERM model

    A mathematical model for breath gas analysis of volatile organic compounds with special emphasis on acetone

    Full text link
    Recommended standardized procedures for determining exhaled lower respiratory nitric oxide and nasal nitric oxide have been developed by task forces of the European Respiratory Society and the American Thoracic Society. These recommendations have paved the way for the measurement of nitric oxide to become a diagnostic tool for specific clinical applications. It would be desirable to develop similar guidelines for the sampling of other trace gases in exhaled breath, especially volatile organic compounds (VOCs) which reflect ongoing metabolism. The concentrations of water-soluble, blood-borne substances in exhaled breath are influenced by: (i) breathing patterns affecting gas exchange in the conducting airways; (ii) the concentrations in the tracheo-bronchial lining fluid; (iii) the alveolar and systemic concentrations of the compound. The classical Farhi equation takes only the alveolar concentrations into account. Real-time measurements of acetone in end-tidal breath under an ergometer challenge show characteristics which cannot be explained within the Farhi setting. Here we develop a compartment model that reliably captures these profiles and is capable of relating breath to the systemic concentrations of acetone. By comparison with experimental data it is inferred that the major part of variability in breath acetone concentrations (e.g., in response to moderate exercise or altered breathing patterns) can be attributed to airway gas exchange, with minimal changes of the underlying blood and tissue concentrations. Moreover, it is deduced that measured end-tidal breath concentrations of acetone determined during resting conditions and free breathing will be rather poor indicators for endogenous levels. Particularly, the current formulation includes the classical Farhi and the Scheid series inhomogeneity model as special limiting cases.Comment: 38 page

    Observational Evidence of S-web Source of the Slow Solar Wind

    Get PDF
    From 2022 March 18 to 21, NOAA Active Region (AR) 12967 was tracked simultaneously by Solar Orbiter at 0.35 au and Hinode/EIS at Earth. During this period, strong blueshifted plasma upflows were observed along a thin, dark corridor of open magnetic field originating at the AR’s leading polarity and continuing toward the southern extension of the northern polar coronal hole. A potential field source surface model shows large lateral expansion of the open magnetic field along the corridor. Squashing factor Q-maps of the large-scale topology further confirm super-radial expansion in support of the S-web theory for the slow wind. The thin corridor of upflows is identified as the source region of a slow solar wind stream characterized by ∼300 km s−1 velocities, low proton temperatures of ∼5 eV, extremely high density >100 cm−3, and a short interval of moderate Alfvénicity accompanied by switchback events. When the connectivity changes from the corridor to the eastern side of the AR, the in situ plasma parameters of the slow solar wind indicate a distinctly different source region. These observations provide strong evidence that the narrow open-field corridors, forming part of the S-web, produce some extreme properties in their associated solar wind streams

    Planetary population synthesis

    Full text link
    In stellar astrophysics, the technique of population synthesis has been successfully used for several decades. For planets, it is in contrast still a young method which only became important in recent years because of the rapid increase of the number of known extrasolar planets, and the associated growth of statistical observational constraints. With planetary population synthesis, the theory of planet formation and evolution can be put to the test against these constraints. In this review of planetary population synthesis, we first briefly list key observational constraints. Then, the work flow in the method and its two main components are presented, namely global end-to-end models that predict planetary system properties directly from protoplanetary disk properties and probability distributions for these initial conditions. An overview of various population synthesis models in the literature is given. The sub-models for the physical processes considered in global models are described: the evolution of the protoplanetary disk, the planets' accretion of solids and gas, orbital migration, and N-body interactions among concurrently growing protoplanets. Next, typical population synthesis results are illustrated in the form of new syntheses obtained with the latest generation of the Bern model. Planetary formation tracks, the distribution of planets in the mass-distance and radius-distance plane, the planetary mass function, and the distributions of planetary radii, semimajor axes, and luminosities are shown, linked to underlying physical processes, and compared with their observational counterparts. We finish by highlighting the most important predictions made by population synthesis models and discuss the lessons learned from these predictions - both those later observationally confirmed and those rejected.Comment: 47 pages, 12 figures. Invited review accepted for publication in the 'Handbook of Exoplanets', planet formation section, section editor: Ralph Pudritz, Springer reference works, Juan Antonio Belmonte and Hans Deeg, Ed

    Molecular and cellular mechanisms underlying the evolution of form and function in the amniote jaw.

    Get PDF
    The amniote jaw complex is a remarkable amalgamation of derivatives from distinct embryonic cell lineages. During development, the cells in these lineages experience concerted movements, migrations, and signaling interactions that take them from their initial origins to their final destinations and imbue their derivatives with aspects of form including their axial orientation, anatomical identity, size, and shape. Perturbations along the way can produce defects and disease, but also generate the variation necessary for jaw evolution and adaptation. We focus on molecular and cellular mechanisms that regulate form in the amniote jaw complex, and that enable structural and functional integration. Special emphasis is placed on the role of cranial neural crest mesenchyme (NCM) during the species-specific patterning of bone, cartilage, tendon, muscle, and other jaw tissues. We also address the effects of biomechanical forces during jaw development and discuss ways in which certain molecular and cellular responses add adaptive and evolutionary plasticity to jaw morphology. Overall, we highlight how variation in molecular and cellular programs can promote the phenomenal diversity and functional morphology achieved during amniote jaw evolution or lead to the range of jaw defects and disease that affect the human condition

    Fixed Duration of Venetoclax-Rituximab in Relapsed/Refractory Chronic Lymphocytic Leukemia Eradicates Minimal Residual Disease and Prolongs Survival: Post-Treatment Follow-Up of the MURANO Phase III Study

    Get PDF
    Purpose: The MURANO study demonstrated significant progression-free survival (PFS) benefit for fixed-duration venetoclax-rituximab compared with bendamustine-rituximab in relapsed/refractory chronic lymphocytic leukemia. With all patients off treatment, we report minimal residual disease (MRD) kinetics and updated outcomes. Methods: Patients were randomly assigned to 2 years of venetoclax plus rituximab during the first six cycles, or six cycles of bendamustine-rituximab. Primary end point was PFS. Safety and peripheral blood (PB) MRD status—at cycle 4, 2 to 3 months after end of combination therapy (EOCT), and every 3 to 6 months thereafter—were secondary end points. Results: Of 194 patients, 174 (90%) completed the venetoclax-rituximab phase and 130 (67%) completed 2 years of venetoclax. With a median follow-up of 36 months, PFS and overall survival remain superior to bendamustine-rituximab (hazard ratio, 0.16 [95% CI, 0.12 to 0.23]; and hazard ratio, 0.50 [95% CI, 0.30 to 0.85], respectively). Patients who received venetoclax-rituximab achieved a higher rate of PB undetectable MRD (uMRD; less than 10−4) at EOCT (62% v 13%) with superiority sustained through month 24 (end of therapy). Overall, uMRD status at EOCT predicted longer PFS. Among those with detectable MRD, low-level MRD (10−4 to less than 10−2) predicted improved PFS compared with high-level MRD (10−2 or greater). At a median of 9.9 months (range, 1.4 to 22.5 months) after completing fixed-duration venetoclax-rituximab, overall only 12% (16 of 130) of patients developed disease progression (11 high-level MRD, three low-level MRD). At the end of therapy, 70% and 98% of patients with uMRD remained in uMRD and without disease progression, respectively. Conclusion: With all patients having finished treatment, continued benefit was observed for venetoclax-rituximab compared with bendamustine-rituximab. uMRD rates were durable and predicted longer PFS, which establishes the impact of PB MRD on the benefit of fixed-duration, venetoclax-containing treatment. Low conversion to detectable MRD and sustained PFS after completion of 2 years of venetoclax-rituximab demonstrate the feasibility of this regimen

    Circumstellar disks and planets. Science cases for next-generation optical/infrared long-baseline interferometers

    Full text link
    We present a review of the interplay between the evolution of circumstellar disks and the formation of planets, both from the perspective of theoretical models and dedicated observations. Based on this, we identify and discuss fundamental questions concerning the formation and evolution of circumstellar disks and planets which can be addressed in the near future with optical and infrared long-baseline interferometers. Furthermore, the importance of complementary observations with long-baseline (sub)millimeter interferometers and high-sensitivity infrared observatories is outlined.Comment: 83 pages; Accepted for publication in "Astronomy and Astrophysics Review"; The final publication is available at http://www.springerlink.co
    corecore