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Abstract

In 2017, the California-Kepler Survey (CKS) published its first data release (DR1) of high-resolution optical
spectra of 1305 planet hosts. Refined CKS planet radii revealed that small planets are bifurcated into two distinct
populations, super-Earths (smaller than 1.5 R⊕) and sub-Neptunes (between 2.0 and 4.0 R⊕), with few planets in
between (the “radius gap”). Several theoretical models of the radius gap predict variation with stellar mass, but
testing these predictions is challenging with CKS DR1 due to its limited Må range of 0.8–1.4Me. Here we present
CKS DR2 with 411 additional spectra and derived properties focusing on stars of 0.5–0.8Me. We found that the
radius gap follows Rp∝ Pm with m= −0.10± 0.03, consistent with predictions of X-ray and ultraviolet- and core-
powered mass-loss mechanisms. We found no evidence that m varies with Må. We observed a correlation between
the average sub-Neptune size and Må. Over 0.5–1.4Me, the average sub-Neptune grows from 2.1 to 2.6 R⊕,
following µ a

R Mp with α= 0.25± 0.03. In contrast, there is no detectable change for super-Earths. TheseMå–Rp

trends suggest that protoplanetary disks can efficiently produce cores up to a threshold mass of Mc, which grows
linearly with stellar mass according to Mc≈ 10M⊕(Må/Me). There is no significant correlation between sub-
Neptune size and stellar metallicity (over −0.5 to +0.5 dex), suggesting a weak relationship between planet
envelope opacity and stellar metallicity. Finally, there is no significant variation in sub-Neptune size with stellar
age (over 1–10 Gyr), which suggests that the majority of envelope contraction concludes after ∼1 Gyr.

Unified Astronomy Thesaurus concepts: Exoplanet astronomy (486); Exoplanet formation (492); Transit
photometry (1709); Exoplanets (498); Super Earths (1655); Mini Neptunes (1063); High resolution
spectroscopy (2096)

Supporting material: machine-readable tables

1. Introduction

The key legacy of NASA’s Kepler mission is its sample of
over 4000 extrasolar planets. These planets were discovered
from precise, nearly continuous photometry obtained over 4 yr
of roughly 200,000 stars. Importantly, the Kepler planet
population covers a wide range of sizes and orbital periods;
sizes range from super-Jupiter to sub-Mercury, and orbital
periods extend from less than a day to more than a year
(Thompson et al. 2018). The Kepler exoplanet census has, and
will continue to, shed light on the diverse outcomes of planet
formation.

The distribution of Kepler planets encodes key aspects of
planet formation physics, including the growth of solid cores, the
accretion (and loss) of gaseous envelopes, and the prevalence of

orbital migration. Gaining insights into these processes requires
detailed knowledge of host stars. Until 2017, the properties of
the vast majority of Kepler planet host stars were based on
broadband photometry, which limited the accuracy of star and
planet properties. Importantly, photometric stellar radii Rå were
uncertain at the ∼40% level (Brown et al. 2011).
To address these limitations, our group conducted the

California-Kepler Survey (CKS; Petigura et al. 2017), a
spectroscopic survey of 1305 planet-hosting stars observed
by Kepler (technically Kepler Objects of Interest, or KOIs).
The CKS consisted of several overlapping samples, the largest
of which was magnitude-limited and included 960 planet hosts
brighter than Kepler-band magnitude mKep= 14.2. Using these
spectra, we measured Teff, glog , and [Fe/H] and refined stellar
Må, Rå, and age, along with planet size Rp and incident stellar
flux Sinc.
The CKS stellar properties enabled several insights into the

occurrence and properties of planets as a function of stellar
metallicity (Petigura et al. 2018b), stellar age (Berger et al. 2018a),
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planet multiplicity (Weiss et al. 2018), stellar obliquity (Winn
et al. 2017), and other properties. One such insight flowed directly
from the improvement in Rå errors from 40% to 10%: the radius
distribution of small planets is bimodal (Fulton et al. 2017). This
result has been confirmed in samples of planets with even smaller
radius uncertainties that have leveraged asteroseismic or parallax
constraints (Berger et al. 2018b; Fulton & Petigura 2018; Van
Eylen et al. 2018; Petigura 2020).

This radius gap was predicted by several groups who
considered the effect of photoevaporation on planetary
envelopes by X-ray and extreme-ultraviolet (XUV) radiation
(Lopez & Fortney 2013; Owen & Wu 2013; Jin et al. 2014;
Chen & Rogers 2016). Other processes that inject energy into
planet envelopes may also produce the gap, such as the
luminosity from cooling cores (Ginzburg et al. 2018; Gupta &
Schlichting 2019) or the heat from accreting planetesimals
(Chatterjee & Chen 2018; Zeng et al. 2019; Wyatt et al. 2020).

Projecting the planet population along the axis of stellar
mass should help illuminate which processes sculpt the
distribution of small planets. For example, photoevaporation
models predict that small planets will lose their envelopes out
to lower bolometric flux levels around low-mass stars due to
increased FXUV/Fbol.

Such studies are challenging with CKS DR1 because it spans
a limited range of Må≈ 0.8–1.4Me. There are several reasons
for this: (1) the Kepler selection function favored FGK stars
(Batalha et al. 2010), (2) most of the Kepler stars below 0.8Me
are fainter than mKep= 14.2, and (3) the spectroscopic
techniques used in Petigura et al. (2017) could not return
reliable parameters for stars cooler than Teff= 4700 K. Despite
the limited Må range, analyses of this data set indicated an
increase in the average size of sub-Neptunes with increasing
stellar mass (Fulton & Petigura 2018; Petigura 2020). In
addition, Wu (2019) and Berger et al. (2020b) found a positive
Må–Rp correlation for sub-Neptunes.

The Teff> 4700 K boundary in CKS poses an additional
challenge for interpreting trends with Må. This boundary
corresponds to Må> 0.65 and 0.80Me at [Fe/H]= −0.4 and
+0.4 dex, respectively, the upper and lower ends of the CKS
metallicity distribution. Owen & Murray-Clay (2018) discussed
how this correlation acts as a confounding factor for
interpreting both mass and metallicity trends in CKS DR1.

Here we present a follow-up survey designed to expand the
stellar-mass range of the CKS sample. We constructed a sample
of planet hosts spanning 0.5–1.4Me (Section 2) and gathered
Keck/HIRES spectra of those absent from CKS DR1. New
spectra of 411 hosts are presented here as CKS DR2
(Section 3). We analyzed the combined DR1/DR2 samples
to derive temperatures, metallicities, and limits on stellar
companions, which we combined with astrometric and
photometric measurements to derive stellar masses, radii, and
ages (Section 4). With updated stellar properties, we refined the
precision and purity of the planet catalog (Section 5). We
analyzed both the distribution of detected planets (Section 6)
and the underlying occurrence rate (Section 7). We offer some
comparisons to planet formation theory (Section 8) and provide
a brief summary and conclusion (Section 9).

2. Sample Selection

Our main goal was to measure planet occurrence as a
function of stellar mass. This requires a sample of planets
drawn from a well-defined sample of stars spanning a broad

range in stellar mass. Before describing our selection function
in detail, we first orient the reader with an overview of our
survey design and practical considerations. When we designed
our survey in 2018, our goal was to increase the number of
low-mass stars with CKS-quality parameters given a fixed
telescope allocation of 15 Keck/HIRES nights. Simply
extending the magnitude-limited survey beyond mKep= 14.2
would have included many stars with Teff≈ 5000–6500 K that
were already well-sampled by DR1 (see Figure 1). Observing
all targets down to mKep= 16.0 in the manner described in
Section 3 would have required ∼75 nights and was impractical.
Instead, we adopted a selection function and observing strategy
that favored cool stars but mitigated magnitude-dependent
effects. The two mitigation strategies are described in detail in
Sections 2–5 but briefly involved selecting single isolated stars
and collecting spectra of homogeneous quality.
We began with 184,933 stars in the union of the following

three catalogs: the Kepler project Data Release 25 (DR25)
stellar properties catalog (Mathur et al. 2017, hereafter M17 ),
the Gaia DR2 catalog (Gaia Collaboration et al. 2018), and the
Berger et al. (2020b, hereafter B20) catalog of stellar proper-
ties. We then applied the following filters.

1. Stellar brightness and effective temperature. Our sample
consists of two magnitude-limited components. If
Teff= 5000–6500 K (as measured by M17), we required
mKep< 14.2; if Teff= 3000–5000 K, we required
mKep< 16.0. A total of 77,243 stars remained.

2. Main-sequence stars. We selected main-sequence stars
using their position in the Gaia color–magnitude diagram.
Stars were included if they reside within the boundaries
shown in Figure 1. A total of 47,502 stars remained.

3. Single stars: Gaia source catalog. If a transit is observed
within a Kepler aperture containing more than one star, it
is often not possible to identify the star hosting the
transiting object. Whichever star is the host, the transit
depth is diluted by the neighboring star(s), and the
inferred planet radius will be biased to smaller values. To
ensure high-precision Rp, we worked to exclude targets
that are diluted by >10%, which would result in an Rp

error of >5%. We excluded stars where the cumulative
G-band flux contribution from all Gaia-identified neigh-
boring stars within 4″ exceeded 10%. Companions
outside of this limit are resolved as separate sources in
the KIC, which had an average FWHM of 2 5 (Brown
et al. 2011). The Kepler project removed the diluting flux
from such sources during the photometric extraction (see
the discussion of the “crowding metric” in Stumpe et al.
2012). A total of 46,468 stars remained.

4. Single stars: Gaia astrometric noise. Companions within
1″ are often not resolved as separate sources in Gaia DR2
but can be identified using the residuals to the astrometric
fits. The Gaia renormalized unit weight error (RUWE) is
conceptually similar to the square root of the reduced χ2

and close to unity when the astrometric data are
consistent with parallax and proper motion only, with
no additional variation due to any companions (Lindeg-
ren 2018). Analyses of stars with high-resolution imaging
have demonstrated that requiring RUWE< 1.2 removes
companions with ΔmG< 3 mag and separations of
ρ= 0 1–1″ (Bryson et al. 2020; Wood et al. 2021; A.
L. Kraus et al. 2022, in preparation). A total of 39,423
stars remained.
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We cross-referenced these stars against the Thompson et al.
(2018, hereafter T18) catalog of KOIs, which we accessed from
the NASA Exoplanet Archive (NEA; Akeson et al. 2013). This
catalog was derived from the final planet search conducted by
the Kepler project (DR25). Among our filtered stellar
sample, T18 lists 39,423 stars hosting 2373 KOIs. We
subjected the KOIs to the following additional filters.

5. Candidate reliability. T18 dispositioned KOIs using a
fully automated procedure called the Robovetter that
performed a series of tests on a suite of data quality
metrics designed to identify false positives due to data
anomalies and eclipsing binaries. When setting the
Robovetter thresholds, T18 emulated the human classi-
fication of the Threshold Crossing Event Review Team.
Robovetter dispositioned all KOIs as either “false
positive” or “planet candidate.” Some KOIs fall near
the boundary between the two dispositions. Through
Monte Carlo simulations, T18 quantified the proximity of
each KOI to this boundary. They reported a “disposition
score,” which is the fraction of Monte Carlo simulations
classified as planet candidates. We required “planet
candidate” status13 with a disposition score14 exceeding
75%. Finally, we removed a handful of known false

positives that cleared the Robovetter that are listed in the
DR25 supplemental table.15 A total of 1425 KOIs
orbiting 1003 host stars remained.

6. Candidate signal-to-noise ratio (S/N). Low-S/N candi-
dates are more likely to be false positives (see, e.g.,
Bryson et al. 2020) and yield lower overall precision on
Rp/Rå. The Kepler project reported S/N as a “multiple
event statistic” (MES; Jenkins 2002).16 We required
MES> 10. A total of 1250 KOIs orbiting 891 host stars
remained.

7. Transit modeling. To compute planet properties, we
used posterior samples of transit parameters derived
from Markov Chain Monte Carlo (MCMC). A small
fraction of the T18 KOIs were not modeled using
MCMC.17 Most of these are dispositioned as false
positives. We removed a handful of candidates that
passed the previous cuts. A total of 1246 KOIs orbiting
888 host stars remained.

Figure 1 shows the application of these filters to the field star
and planet samples. In this paper, we refer to these 888 stars as
the “CKS extended mass” (CXM) sample.

Figure 1. Panel (a): gray points show effective temperature and apparent magnitude mKep of stars observed by Kepler; red points are stars that pass the selection
criteria described in Section 2. Panel (b): same as panel (a) but for planet hosts. Panel (c): same as panel (a) but showing Gaia absolute G-band magnitude MG and
Bp − Rp color. The boundaries of our main-sequence filter are shown as red dashed lines. Panel (d): same as panel (c) but for planet hosts.

13 NEA data column: koi_pdisposition.
14 NEA data column: koi_score.

15 NEA data column: koi_pdisposition.
16 NEA data column: koi_max_mult_ev.
17 NEA data column: koi_fittype.
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3. Spectroscopic Observations

We worked to compile a homogeneous spectroscopic catalog
of all CXM stars from new and archival observations. All
spectra were obtained with Keck/HIRES (Vogt et al. 1994) to
ensure common systematics in our analysis. Our goal was to
gather spectra with R� 60,000 and S/N� 20 pixel−1 on blaze
at 5500Å.

The inventory of DR1/DR2 spectra and the CXM host star
sample are shown in Figure 2. By design, there was substantial
overlap between the 1305-star DR1 sample and the CXM
sample (628/888 spectra). The DR1 spectra have R� 60,000
and S/N� 45 pixel−1 and thus met our spectral quality goals.
The 411 spectra in DR2 are a mixture of 81 archival HIRES
spectra taken before 2018 and 330 new spectra taken by our
team since then. For the archival spectra, all have R� 60,000,
and all but four had S/N� 20 pixel−1. An additional 260/888
CXM stars have spectra in DR2.

Below, we describe the observations of the post-2018 DR2
spectra, which were executed as part of a NASA Key Strategic
Mission Support program (PI: Petigura). Our strategy was
identical to that of CKS DR1, except we exposed to a lower
S/N. We used the standard setup of the California Planet
Search (CPS; Howard et al. 2010). We observed stars through
the “C2” slit with sky-projected dimensions of 0 86 × 14 0,
which achieves a spectral resolution of R≈ 60,000. We used
the exposure meter to attain a designed S/N, which is measured
at the peak of the blaze function at λ= 5500Å.

Given the magnitude-limited nature of DR1, most DR2 stars
had mKep= 14.2–16.0 mag. It would have been prohibitively
expensive to observe these stars to the same S/N level as DR1
(45 pixel−1), so we used the exposure meter to achieve
S/N= 20 pixel−1 for stars in this magnitude range. In
Section 4, we demonstrate that the additional photon-limited
uncertainties are smaller than other sources of uncertainty in the
extracted parameters.

For faint targets, the sky background is occasionally
comparable to the stellar spectrum, depending on moon
separation, moon phase, and cloud cover. In our spectral
reduction, we removed the sky background (see Batalha et al.
2011 for details), but it still contributes to exposure meter
counts. Thus, at a fixed mV and exposure meter setting,

additional sky background would cause exposures to terminate
early. While at the telescope, we used a custom script to
compute the sky contribution in real time and adjusted the
exposure meter setting such that we would reach the desired
S/N after sky subtraction.
We reduced our spectra according to the standard practices

of CPS. We removed the blaze function by dividing our spectra
by a composite spectrum of spectrally flat standards compiled
by Clubb et al. (2018). One component of our spectroscopic
analysis involved registering each spectrum to a common
wavelength scale. We used the SpecMatch-Empirical code
(Yee et al. 2017), which includes a ladder of reference spectra
that have been registered against the National Solar Observa-
tory solar atlas (Kurucz et al. 1984). Figure 3 shows the Mg I b
region for representative spectra over a range of Teff. The
deblazed spectra are available via the Keck Observatory
Archive,18 the CFOP website,19 and a website maintained by
our team.20 We have also made available the standard
observatory-frame wavelength solution applicable to every
spectrum, which is accurate to within 1 reduced pixel or
1.2 km s−1. The registered spectra are also available at the
above repositories.

4. Host Star Characterization

4.1. Spectroscopy

We derived stellar parameters from our spectra using two
related and complementary codes: SpecMatch-Synthetic and
SpecMatch-Empirical. Both codes were designed to yield high-
quality parameters even at moderate or low S/N. A detailed
description of SpecMatch-Synthetic is available in Petigura
(2015), and the code’s application to CKS DR1 is given in
Petigura et al. (2017). In brief, the code generates a synthetic
spectrum by interpolating within a set of library spectra
computed over a grid of Teff, glog , and [Fe/H]. It then applies
line-broadening kernels that account for the instrumental
profile, stellar rotation, and macroturbulence. The library
spectra were computed by Coelho et al. (2005) under the
assumption of local thermodynamic equilibrium (LTE) using
the Castelli & Kurucz (2003) model atmospheres. The code
derives Teff, glog , [Fe/H], and v isin using nonlinear
optimization of an l2 metric, which is evaluated over five
spectral segments with a combined spectral bandwidth of
380Å between 5200 and 6260Å.
The uncertainties of the SpecMatch-Synthetic parameters have

been extensively vetted for stars having Teff= 4700–
6500 K. Errors are dominated by systematic uncertainties, which
are σ(Teff)= 100K, ( )s =glog 0.10 dex, and σ([Fe/H])=
0.06 dex. Poisson uncertainties are smaller than systematic
uncertainties even at low S/N because the code fits a wide
spectral bandpass and combines information from many lines. At
our lowest S/N (20 pixel−1), photon-limited errors are
σ(Teff)= 34 K, ( )s =glog 0.05 dex, and σ([Fe/H])=
0.02 dex, respectively, below the systematic floor. Above
6500 K, the quality of the derived parameters degrades due to
the reduced number of lines and substantial rotational broad-
ening. As Teff drops below 4700 K, the number of lines in
SpecMatch-Synthetic wavelength regions increases dramatically
due to molecular features (of which MgH is the most prominent).

Figure 2. Venn diagram illustrating the number of host stars belonging to
various samples described in this paper. CXM: 888 stars in the extended stellar-
mass sample described in Section 2 that forms the basis of the exoplanet
demographic work described in Sections 6 and 7. DR1: 1305 stars from
Petigura et al. (2017). DR2: 411 stars with new spectra presented in this work.

18 http://www2.keck.hawaii.edu/koa/public/koa.php
19 http://cfop.ipac.caltech.edu
20 http://astro.caltech.edu/~howard/cks/
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The synthetic spectra do not accurately reproduce these complex
spectra, and the derived parameters suffer.

By design, the CXM sample included many stars cooler than
4700 K, so we needed another method that is better suited to cool
stars. In preparation for this project, Yee et al. (2017) developed
SpecMatch-Empirical, which sidesteps the difficulties of cool star
spectral synthesis. In brief, SpecMatch-Empirical compares a
target spectrum to a spectral library of 404 stars with precise and
accurate Teff, Rå, and [Fe/H] measured through a combination of
the following techniques: interferometry, asteroseismology, line-
by-line LTE spectral synthesis, and spectrophotometry. The code
identifies the top five matches based on an l2 metric. The target
spectrum is then fit using a linear combination of these five
spectra over a broad 1000Å spectral region spanning
5000–6000Å. The extracted parameters are a weighted average
of the input parameters. For the representative spectra in Figure 3,
we have overplotted the best-fit spectra.

Yee et al. (2017) validated the precision and accuracy of
SpecMatch-Empirical across the H-R diagram and found that
the quality of the derived parameters varies in this space due to
the relative density of library spectra. For stars having
Teff= 3500–5000 K and [Fe/H] between −0.5 and +0.5 dex,

the code achieves uncertainties of σ(Teff)= 60 K and σ([Fe/
H])= 0.12 dex. Because this code analyzes 1000Å of
spectrum, it is robust to photon-limited uncertainties at low
S/N. For our lowest-S/N spectra at 20 pixel−1, Poisson
uncertainties amount to σ(Teff)= 6 K and σ([Fe/H])= 0.004
dex and thus contribute negligibly to the overall error budget.
Table 1 lists our adopted stellar parameters for the 1716 star

union of DR1 and DR2. Given the relative strengths and
weaknesses of the two codes, we split our sample into two
groups at Teff= 4800 K, as measured by SpecMatch-Empirical.
We report SpecMatch-Synthetic parameters for the 1350 stars
above this threshold and SpecMatch-Empirical for the 366
below.
In the following section, we combine our spectroscopic Teff

and [Fe/H] measurements with astrometric and photometric
constraints to characterize the stellar hosts. Before proceeding,
we note that the input spectra have a bimodal distribution of
S/N and consider whether this could bias the DR1 and DR2
stellar parameters relative to one another. As explained above,
the photon-limited Teff and [Fe/H] errors at S/N= 20 pixel−1

are less than half the systematic errors. Any S/N-dependent
offsets are washed out by the larger systematic uncertainties.

Figure 3. The black lines show a segment of HIRES spectra containing the Mg I b triplet for seven representative spectra observed by our team to illustrate the spectral
resolution R � 60,000 and S/N � 20 pixel−1 (see Section 3). The red lines are SpecMatch-Empirical fits (see Section 4.1).

Table 1
Stellar Properties

KOI mK π Teff [Fe/H] v isin Prov Rå Må,iso Rå,iso ρå,iso ageå,iso πspec SB2 CXM
(mag) (mas) (K) (dex) (km s−1) (Re) (Me) (Re) (g cc−1) (Gyr) (mas)

1 9.85 4.67 5857 0.02 1.3 syn 1.04 1.02 1.03 0.91 3.7 4.76 1 1
2 9.33 2.96 6403 0.22 5.1 syn 2.00 1.50 1.99 0.19 1.8 3.72 1 1
3 7.01 26.50 4619 0.16 L emp 0.78 0.76 0.75 1.79 11.2 23.80 1 1
4 10.20 1.29 5948 −0.27 38.0 syn 3.26 1.45 3.22 0.04 2.0 0.93 3 0
6 10.99 2.13 6356 0.05 11.8 syn 1.29 1.23 1.28 0.57 1.5 2.24 1 0

Note. Properties of 1716 planet-hosting stars from the union of the DR1 and DR2 data sets. Here mK is the 2MASS K-band apparent magnitude, and π is the Gaia DR2
parallax. The Teff, [Fe/H], and v isin were derived by one of two methods listed in the “Prov” column: “syn,” SpecMatch-Synthetic, and “emp,” SpecMatch-
Empirical. Here Rå is our adopted stellar radius from the Stefan–Boltzmann law. Stellar properties with the “iso” subscript incorporate constraints from the MIST
isochrones. Here “SB2” encodes the limits on spectroscopic binaries (SB2s) using the ReaMatch code (Kolbl et al. 2015): 1, no detection of SB2 with ΔmV  5 mag
and ΔRV  12 km s−1; 2, Teff < 3500 K, star unfit for ReaMatch; 3, v isin > 10 km s−1, star unfit for ReaMatch; 4, ambiguous detection; 5, obvious detection. Note:
ReaMatch computes Teff and v isin independently from SpecMatch-Synthetic and SpecMatch-Empirical. The “CXM” flag is 1 if the star is in the 888-star CXM
subset. Median uncertainties are as follows: mK, 0.02 mag; π, 1.4%; Teff, 100 K; [Fe/H], 0.06 dex; v isin , 1 km s−1; Rå, 3.9%; Må,iso, 3.7%; Rå,iso, 2.6%; ρå,iso, 8.9%;
ageå,iso, 0.24 dex; πspec, 16%.

(This table is available in its entirety in machine-readable form.)
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4.2. Stellar Properties

We derived stellar masses, radii, and ages using our
spectroscopic measurements of Teff and [Fe/H], along with
astrometric and photometric constraints. Our methodology
closely follows that of Fulton & Petigura (2018). We give a
brief summary below, noting differences where relevant.

We measured Rå using the isoclassify package in its “direct”
mode. This code evaluates Rå from the Stefan–Boltzmann law,

( )⎜ ⎟
⎛
⎝

⎞
⎠ps

=R
L

T4
, 1bol

sb eff
4

1 2

where Lbol is the bolometric stellar luminosity, and σsb is the
Stefan–Boltzmann constant. Here Lbol is directly related to
bolometric magnitude Mbol, which may be expressed as

( )m= - - +M m A BC, 2bol

where m is the apparent magnitude, μ is the distance modulus,
A is the line-of-sight extinction, and BC is the bolometric
correction. We summarize each input below, along with their
typical uncertainties. Given the discontinuity in our sample
selection at mKep= 14.2 described in Section 2, we report
median uncertainties above and below this value.

1. Apparent magnitude. We used Two Micron All Sky
Survey (2MASS) K-band photometric measurements
because dust extinction is less severe in the infrared.
We used 2MASS mK, which has a median precision of
0.02 mag for mKep< 14.2 and 0.03 mag for mKep> 14.2.

2. Extinction. We accounted for K-band extinction A using
the 3D dust map of Green et al. (2019), an update to the
Green et al. (2018) map used in Fulton & Petigura (2018).
Median A is 0.01 mag for both bright and faint subsets.

3. Distance modulus. We used Gaia DR2 parallaxes and
applied a correction of +0.053 mas to account for a
known systematic offset in the Kepler field (Zinn et al.
2019). The parallaxes have a median precision of 1.2%
for mKep< 14.2 and 1.8% for mKep> 14.2. Isoclassify
handles the conversion between parallax and distance
modulus using a Bayesian framework.

4. Bolometric correction. Isoclassify interpolates over a grid
of bolometric corrections computed by the MESA
Isochrones and Stellar Tracks project (MIST v1.2; Paxton
et al. 2011, 2013, 2015; Choi et al. 2016; Dotter 2016).
Uncertainties in Teff dominate the uncertainty of the K-
band bolometric correction, and a 60 K uncertainty
translates to an ≈0.03 mag error on BC.

Table 1 lists our measured Rå, and Figure 4 shows the
distribution of fractional Rå uncertainties. The median
fractional uncertainty is 4.0% for mKep< 14.2 and 4.4% for
mKep> 14.2.

We also ran isoclassify in its “grid” mode with the same
constraints. In this mode, the code queries the MIST
isochrones, which provide various stellar properties over a
grid of Må, [Fe/H], and age. The grid extends to 20 Gyr to
minimize grid edge effects, which can bias the parameter
posteriors. At each grid point, isoclassify computes the
likelihood that the point is consistent with the input constraints.

Marginalized values are determined by direct integration.
We list Må,iso, Rå,iso, ρå,iso, and ageå,iso in Table 1. The “iso”
subscript indicates that these parameters are forced to be
consistent with MIST isochrones. The median fractional

uncertainty for Må,iso is 3.8% for mKep< 14.2 and 3.7% for
mKep> 14.2; for ρå,iso, it is 8.7% for mKep< 14.2 and 3.8% for
mKep> 14.2. A handful of stars have ageå,iso> 14 Gyr because
the grid extends to 20 Gyr for the reasons explained above. Age
uncertainties vary widely across the H-R diagram and are
discussed in Section 6.

5. Planet Catalog

In the previous section, we computed stellar properties in the
combined DR1/DR2 data set. For the remainder of the paper,
we focus on the 1246 planets associated with the 888-star CXM
subsample (see Figure 2). In this section, we first compute the
planet properties given our updated stellar properties and then
apply an additional set of quality checks to produce a high-
reliability sample of planets for demographic work in later
sections.

5.1. Planet Properties

We computed Rp from our Rå (listed in Table 1) and T18ʼs
modeling of Kepler light curves. We multiplied our posterior
samples on Rå by the MCMC-derived posterior samples on
Rp/Rå (available at the NEA). The median fractional error on
Rp/Rå is 3.9% for mKep< 14.2 and 4.8% for mKep> 14.2.
Uncertainties in Rå and Rp/Rå are independent and propagated
into Rp, and we quote the 16th, 50th, and 84th posterior
quantiles in Table 2. The median fractional precision in Rp is
5.6% for mKep< 14.2 and 6.3% for mKep> 14.2. Figure 4
shows the fractional precision of Rp, Rå, and Rp/Rå. For most
of the sample, Rå errors are comparable to or larger than Rp/Rå

errors. However, for a small subset, Rp/Rå errors dominate.
A note about the provenance of Rp/Rå: there are a number of

published catalogs of Rp/Rå from the Kepler project, of
which T18 is the most recent. The NEA table corresponding to
the T18 catalog lists the “best-fit” Rp/Rå, not the posterior
medians. Petigura (2020) found that these best-fit values
contribute noise to Rp/Rå from the nonlinear optimization and
recommended using posterior medians, which are a more
robust estimator.
We compared our planet radii to T18 by computing the ratio

of the radii, r= Rp,us/Rp,T18. There was a negligible systematic
offset mean(r)= 1.00 but a substantial dispersion rms

Figure 4. Fractional precision of Rp, Rå, and Rp/Rå for the planets in the CXM
sample.
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(r)= 20%. The dispersion is dominated by uncertainties in
the T18 Rp.

Two additional quantities were relevant to our goal of
precise planet radii: the observed transit duration T and the
expected duration of a centrally transiting planet on a circular
orbit Tmax,circ. Here T refers to the time between the midpoints
of first/second contact and third/fourth contact. In the T18
modeling, the transit shape was set by the following free
parameters: period P, transit epoch T0, impact parameter b,
mean stellar density assuming a circular orbit ρå,circ, and Rp/Rå.
We derived T and its uncertainties according to

( ) ( )⎜ ⎟ ⎜ ⎟
⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

r
= -

-

-
T b

P
2.036 hr 1

1 day 1 g cm
32 1 2

1 3
,circ

3

1 3

using the T18 MCMC chains. We computed Tmax,circ according
to

( )⎜ ⎟ ⎜ ⎟
⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

r
=

-

-
T

P
2.036 hr

1 day 1 g cm
. 4max,circ

1 3
,iso

3

1 3

Both T and Tmax,circ are listed in Table 2, along with semimajor
axis a and incident stellar flux Sinc.

5.2. Refining the Planet Sample

While the initial CXM sample was optimized for high-
reliability planets (Section 2), we incorporated additional
diagnostics from our spectra to further increase sample purity.
We first filtered on the following stellar properties.

1. Rotation rate. Our spectroscopic codes are unreliable at
v isin > 20 km s−1 (Petigura et al. 2017). We excluded 17
stars above this threshold that all had Teff> 6500 K as
measured by B20. A total of 1227 KOIs orbiting 871
hosts remained.

2. Spectroscopic parallax. Following Fulton & Petigura
(2018), we used isoclassify to compute a “spectroscopic
parallax” constrained by our Teff, [Fe/H], mK, and the
MIST models. If the spectroscopic and trigonometric
parallaxes differ significantly, we conclude that the input
parameters used to compute Rå are inconsistent due to
unresolved binaries or other effects. We removed nine
stars where these parallaxes differed by 4σ or more. We
chose a 4σ over a 3σ threshold because the probability of
a 3σ event is 3× 10−3; thus, we expect ≈three such
events in a sample of ≈103 stars. The probability of a 4σ

event is 6× 10−5, so a single such event is unlikely. A
total of 1215 KOIs orbiting 862 hosts remained.

3. Secondary spectra. We removed one star where we
identified a secondary set of spectral lines using the
methodology of Kolbl et al. (2015), which is sensitive to
binaries having ΔmV 5 mag and Δv 12 km s−1. A
total of 1214 KOIs orbiting 861 hosts remained.

Next, we filtered based on the following planet properties.

14. Impact parameter. We removed grazing and high impact
parameter planets by excluding planets where the median
of the b posterior exceeded 0.8. Petigura (2020) found,
however, that for most Kepler light curves, this cut is
ineffective at excluding high-b transits because b is nearly
unconstrained. For such transits, Rp/Rå is biased by
10%–20% due to the strong b–Rp/Rå covariance.
However, T/Tmax,circ is an effective proxy for b. In
addition to our explicit filter on b, we also required

>T T 0.6max,circ in order to exclude transits with b> 0.8.
While planets with eccentric orbits that transit near
periastron also produce low T/Tmax,circ, Petigura (2020)
showed that fewer than 20% of Kepler planets with

<T T 0.6max,circ have b< 0.8. A total of 973 KOIs
orbiting 704 hosts remained.

15. Radius precision. We required fractional errors on Rp of
20% or less. A total of 970 KOIs orbiting 703 hosts
remained.

The properties of the stars that passed these cuts are shown in
Figure 5. They span a mass range of Må≈ 0.5–1.4Me.

6. Distribution of Detected Planets

From here on, we describe and interpret the features in our
curated sample of 970 planets. In this section, we treat the
population of detected planets before turning to the occurrence
distribution in Section 7. We explore how the radius gap
correlates with P, Sinc, Må, and age in Section 6.1. We then
inspect how the super-Earth and sub-Neptune populations vary
with stellar mass in Section 6.2.

6.1. Dependence of the Radius Gap on Period, Flux, Stellar
Mass, and Stellar Metallicity

Figure 6 shows several views of our planet sample. The y-
axes show updated Rp, and the x-axes show P, Sinc, Må, and
[Fe/H]. The contours show the relative density of detected

Table 2
Planet Properties

Planet P Rp/Rå T Rp Tmax,circ a Sinc samp
(days) (%) (hr) (R⊕) (hr) (au) (S⊕)

K00001.01 2.5 12.39 1.29 14.04 2.83 0.037 814.85 0
K00002.01 2.2 7.52 3.55 16.42 4.58 0.039 3855.68 1
K00003.01 4.9 5.80 2.23 4.92 2.84 0.053 80.94 1
K00007.01 3.2 2.45 3.84 4.07 4.29 0.046 1082.71 1
K00010.01 3.5 9.21 2.75 15.51 4.47 0.050 1262.15 1

Note. Properties of 1246 planets orbiting the 888-star CXM sample. Orbital period P, planet-to-star radius ratio Rp/Rå, and transit duration T were measured from
Kepler photometry by Thompson et al. (2018). Here Rp follows from Rp/Rå and Rå. The expected duration of a centrally transiting object on a circular orbit Tmax,circ,
semimajor axis a, and incident bolometric flux Sinc are determined from Kepler’s third law and the Stefan–Boltzmann law. The “samp” flag is 1 if the planet is in the
curated sample of 970 planets described at the end of Section 5. Median uncertainties are as follows: P, 3 ppm; Rp/Rå, 4.3%; T, 2.3%, Rp, 5.7%; Tmax,circ, 2.9%; a,
1.2%; Sinc, 9.2%.

(This table is available in its entirety in machine-readable form.)
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planets in these domains using a Gaussian kernel density
estimation (KDE), and the KDE bandwidths are specified in the
caption. Figure 7 is analogous to Figure 6 but with Rp restricted
to 1–4 R⊕ for a detailed view of the radius gap.

The P–Rp distribution and closely related Sinc–Rp distribution
of Kepler planets have been extensively studied in previous
works. We begin by remarking on several known features that
appear in our extended stellar-mass sample. Most Kepler
planets fall into one of two size categories: super-Earths and
sub-Neptunes. For definitiveness, we adopt the following size
limits for the two planet classes: Rp= 1.0–1.7 and 1.7–4.0 R⊕.
The radius gap separating the populations was observed by
Fulton et al. (2017) in CKS DR1 (Må≈ 0.8–1.3Me), Van
Eylen et al. (2018) in a sample of stars with asteroseismic
detections (Må≈ 1.0–1.4Me), and other subsequent works.
We again resolve the radius gap, despite the broader Må range
of the CXM sample (Må≈ 0.5–1.4Me).

The distribution of super-Earths is centered at shorter periods
and higher incident fluxes than the distribution of sub-
Neptunes. Compared to super-Earths, there are few sub-
Neptunes with P< 3 days or Sinc> 300 S⊕. This paucity of
sub-Neptunes is not a selection effect because larger planets are
easier to detect. This zone of low sub-Neptune occurrence is

sometimes referred to as the sub-Neptune desert (see, e.g.,
Szabó & Kiss 2011; Beaugé & Nesvorný 2013; Lundkvist et al.
2016). In Section 7, we quantify the sharpness of this boundary
and explore its dependence on stellar mass. The relative lack of
super-Earths at P> 30 days and Sinc< 10 S⊕ is closely tied to
survey completeness, also addressed in Section 7.
We wish to characterize the slope of the radius gap in P–Rp

and Sinc–Rp space because it is a metric by which to test
theoretical predictions. However, fitting a parameterized
description of the radius gap is challenging, since it involves
characterizing the absence of planets. Van Eylen et al. (2018)
used a support vector classification (SVC) scheme to find the
line that maximized the distance between the super-Earth and
sub-Neptune populations. The SVC scheme struggles for our
sample because the gap is not devoid of planets. (Recently,
David et al. 2021 investigated how regularization can assist the
SVC identification of the radius gap in the CKS sample.)
We adopted a different approach, starting with the relative

number density of detected planets in the P–Rp plane
d N d R d Plog logp

2 as measured by our KDE. This quantity
is shown as contours in Figure 7(a). We then found the
minimum density along 100 vertical lines spanning

Rlog p = 0.15–0.35 spaced uniformly in Plog over 0.5–1.5.

Figure 5. Properties of host stars in the filtered CXM sample described in Section 5.2. Panel (a): stellar mass and metallicity. Panel (b): stellar radius and effective
temperature. The color scale conveys the isochrone age uncertainty in dex (half the difference between the 84th and 16th percentiles of the age posterior). Panel (c):
stellar metallicity and age. Panel (d): stellar mass and age where the color scale is equivalent to panel (b). Several stars have ages exceeding 14 Gyr for reasons we
explain in Section 4.2. We discuss correlations between mass, metallicity, and age in Section 6.2.
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We then fit the train of 100 minima with following power law:

( ) ( )⎜ ⎟
⎛
⎝

⎞
⎠

=R P R
P

10 days
, 5p p

m

,0

where the slope m and intercept Rp,0 are free parameters. To be
clear, Rp,0 should be interpreted as the midpoint of the radius
gap at 10 day orbital periods. We chose 10 days as a convenient
reference point near the middle of the super-Earth and sub-
Neptune populations shown in Figure 7(a). To determine
uncertainties, we generated 1000 bootstrap resamples with
replacement of the planet population shown in Figure 7(a)
(Press 2002). For each bootstrapped population, we recom-
puted the planet number density with our KDE, the train of
minima, and the best-fitting power law. We found

= = - -
+m d R d Plog log 0.11p 0.02

0.02 and Rp,0= -
+1.84 0.03

0.03 R⊕,
which reflect the 16th, 50th, and 84th percentiles. Figure 7
shows the credible gap models. We explored the sensitivity of
our method to different period ranges by perturbing the upper
and lower boundaries by ±0.25 dex. The derived parameters
were consistent to 1σ. We also explored the sensitivity of our
method to our adopted KDE period bandwidth. A very wide
bandwidth will flatten the radius gap (i.e., bias |m| toward
smaller values). We repeated our analysis with a much smaller

bandwidth of 0.04 dex and found that m and Rp,0 changed by
less than 1σ.
We performed similar analyses to fit the radius gap as a function

of Sinc,Må, and [Fe/H]. Table 3 lists the parametric models used in
the fits and the credible range of parameters. Figure 7 shows the
range of credible gap models. We observed a positive slope
with incident flux ( = -

+d R d Slog log 0.06p inc 0.01
0.01), a positive

slope with stellar mass ( = -
+

d R d Mlog log 0.18p 0.07
0.08), and no

significant correlation with metallicity ( [ ] =d R dlog Fe Hp

-
+0.01 0.06

0.05).
We explored how the P–Rp distribution of planets changes

with Må. The left panels of Figure 8 shows this distribution for
three different bins of stellar mass with the following
boundaries: 0.5, 0.7, 1.0, and 1.4Me. The super-Earth and
sub-Neptune populations are distinct in each bin, but their
locations vary with Må. As Må increases, the population of
super-Earths and sub-Neptunes separates; the super-Earth
population is confined to Rp< 1.7 R⊕ while the sub-Neptunes
grow in size. We measured the slope and intercept of the radius
gap in these three bins. They are given in Table 3 and
consistent to 2σ.
We also explored how the Sinc–Rp distribution changes with

Må. Figure 9 is analogous to Figure 8, except it shows the
Sinc–Rp distribution for three bins of stellar mass. The credible
models describing the radius gap in this space are consistent
to 2σ.

Figure 6. Panel (a): sizes and orbital periods of detected planets after applying the filters described in Section 5.2. The contours show a Gaussian kernel density
estimate (KDE) of the number density of planets in this space. The kernel bandwidth is 0.029 dex in Rp and 0.18 dex in P, as shown by the symbol labeled “bw.” The
“uncert” symbol shows the median Rp uncertainty (P uncertainties are smaller than the line width). Panels (b)–(d): same as panel (a), except that the x-axis is Sinc, Må,
and [Fe/H], and the kernel bandwidths along the horizontal axes are 0.30, 0.061, and 0.1.
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6.2. Dependence of Planet Size on Stellar Mass

In the previous section, we measured the slope of the radius
gap in the Rp–Må plane and noted that it increases with Må.
Inspecting Figure 7(c), we see qualitatively that the radius gap
trend is driven by the fact that the typical sub-Neptune grows
with stellar mass, while the typical super-Earth does not. Here
we quantify these trends and explore possible confounding
factors.

We first measured the sub-Neptune Rp–Må correlation by
selecting all sub-Neptunes from the population shown in
Figure 7 based on their radii (Rp= 1.7–4.0 R⊕). We then fit a
power law,

( )


⎜ ⎟
⎛
⎝

⎞
⎠

=
a

R R
M

M
. 6p p,0

We used the Levenberg–Marquardt algorithm as implemented
in the lmfit Python package to find the best-fit parameters and
measured uncertainties via 1000 bootstrap resamples. We
detected a positive correlation between Må and sub-Neptune
size at 8σ significance, α= 0.25± 0.03. An identical analysis
for the super-Earths (Rp= 1.0–1.7 R⊕) revealed no correlation,
α= 0.02± 0.03.

Before interpreting these trends with Må, we must consider
the confounding effects of other stellar properties that are
correlated with Må. (We consider effects from the
Må-dependent survey completeness in Section 7.2.) Stellar

metallicity and age are both concerns because they are
astrophysically correlated with mass. This Må–[Fe/H]–age
correlation is tied to the chemical enrichment of the galaxy and
stellar life spans. A star’s main-sequence lifetime is a strong
function of its mass: ( )~ -

t M M10 Gyrms
2.5. Massive stars

are younger, on average, and formed when the galaxy was
more enriched in metals, as shown in Figures 5(a) and (c).
Figure 5(b) highlights the variable uncertainties of our age
measurements, which range from ≈0.1 dex for stars that have
evolved off the main sequence to ≈0.5 dex for stars with
Teff 5500 K, i.e., indistinguishable from the zero-age main
sequence.
We quantified possible metallicity and age effects by

including them in our regression:
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 
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. 7p p,0

Fe
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When we allowed α and β to vary and fixed γ to zero, we
found β= −0.01± 0.02 and –0.00± 0.02 for sub-Neptunes
and super-Earths, i.e., no significant Rp–[Fe/H] correlation.
Finally, we considered the effects of age by allowing γ to vary
as well. We restricted our analysis to stars with Teff> 5500 K
where ageå,iso is not prior-dominated. We found γ=
−0.01± 0.03 and 0.02± 0.02 for the sub-Neptunes and
super-Earths, i.e., no Rp–age correlation.
Based on these fits, we concluded that stellar mass rather

than metallicity or age is the property most closely linked to

Figure 7. Zoomed-in version of Figure 6 highlighting the radius gap, which is visible in all projections. In the Må projection, the typical sub-Neptune becomes larger
with Må, while the super-Earths remain the same size. The bands are power-law fits of the radius gap (see Section 6.1).
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sub-Neptune size variation. We acknowledge two additional
caveats to the above analysis, which we address in later
sections. First, we fit the population of detected planets, which
includes survey completeness effects that are addressed in
Section 7.2. Second, orbital period is another possible
confounding variable if the shape of the period distribution
varies with stellar mass. Fortunately, as we show in
Section 7.3, the period distribution is nearly independent of
stellar mass up to a normalization constant.

7. Debiased Distribution of Planets

We have characterized the location and slope of the radius
gap and its dependence on stellar mass. However, one must
exercise caution when connecting these trends to planet
formation models because the distributions of planets have
been filtered through Kepler’s selection function. In this
section, we remove selection effects to characterize variation
in the planet population with stellar mass.

In Section 7.1, we reexamine the slope of the radius gap as a
function of period and incident flux (first treated in Section 6.2)
and find consistent results after accounting for selection effects.
In Section 7.2, we measure the sizes of super-Earths and sub-
Neptunes (as in Section 6.2) and observe the same qualitative
trends after removing selection effects. In Section 7.3, we
characterize how the period and incident flux distributions of
super-Earths and sub-Neptunes vary with stellar mass.

7.1. Dependence of the Radius Gap on Stellar Mass

We return to the P–Rp distribution of planets shown in
Figure 8. We wish to remove Kepler’s observational biases to

measure the planet occurrence rate density (ORD),
d f d Pd Rlog log p

2 . One may integrate the ORD over a
specified domain in the P–Rp plane to derive the number of
planets per star residing in that domain.
For every detected planet in a sample of nå stars, a large

number are missed due to nontransiting geometries or
insufficient photometric S/N. We account for both effects
here using the inverse detection efficiency method (IDEM; see
Fulton & Petigura 2018). Each detected planet i with (P, Rp)
represents = á ñw p p1i tr det total planets, where á ñp ptr det is the
product of transit and detection probability averaged over the
parent stellar population. We computed á ñp ptr det over a grid of
(P, Rp). The probability that a randomly inclined planet with
semimajor axis a will transit with b< 0.8 is = p R a0.8tr ,
assuming circular orbits. We computed ptr for each star using
the B20 Rå and deriving a from P and the B20 Må using
Kepler’s third law.
We characterized the recovery rate pdet following the

procedure described in Christiansen et al. (2020). These
authors injected a suite of 146,295 synthetic transits into the
raw Kepler pixel-level data and searched for transits using the
same pipeline used to produce the T18 catalog. The output was
a list of injections that were either successfully recovered or
not. This list may be used to determine the average recovery
rate for any Kepler sample of interest. We selected the subset of
injections with P= 1–300 days into our parent stellar
population described in Section 2 and measured the recovery
rate as a function of the expected MES, a close relative of
transit S/N. We modeled the completeness curve as a Γ
cumulative distribution function:

( )
( )

( )ò=
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- -p
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b a
t e dtMES . 8
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a t b

det
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1

The best-fit model had the coefficients (a, b, c)= (26.1, 0.320,
0.941) and is shown in Figure 10. We set the recovery rate to
zero when MES< 10 to incorporate our filter described in
Section 2. We evaluated the MES for each star based on the
putative planet’s transit depth and duration and the star’s
tabulated photometric noise (combined differential photometric
precision; Jenkins et al. 2010).
With our calculated weights w, we may now compute the

total number of planets within a given region of the P–Rp plane
by summing the weights of the planets within that region, ∑iwi,
or compute the occurrence rate (number of planets per star) via
(1/nå)∑iwi.
The IDEM, while mathematically straightforward, has some

drawbacks, particularly when pdet is small. In brief, Hsu et al.
(2018) showed that the IDEM is a biased estimator at low pdet
because the weights wi are computed assuming no uncertainties
in Rp. Hsu et al. (2018) proposed a less biased estimator using
approximate Bayesian computation (ABC). We avoided these
complications by restricting our analysis to regions where
pdet > 25%, where differences between the IDEM and ABC
amount to <1σ (Fulton & Petigura 2018).
We measured the ORD in the three bins of stellar mass

introduced in Section 6.2 via

( ) ( )å= - -


d f

d Pd R n
w k P P R R

log log

1
, , 9

p i
i i p p i

2

,

where k is a 2D Gaussian with a bandwidth of ( ) =log 2 0.3 dex
in P and ( )log 1.05 = 0.02 dex in Rp. The results are shown in

Table 3
Power-law Fits to the Radius Gap

Fit Må m Rp,0 Dist.

Rp = Rp,0 ( )P m

10 days
0.5–1.4 - -

+0.11 0.02
0.02

-
+1.84 0.03

0.03 D

0.5–0.7 - -
+0.12 0.04

0.06
-
+1.78 0.06

0.05 D

0.7–1.0 - -
+0.13 0.06

0.07
-
+1.74 0.08

0.09 D

1.0–1.4 - -
+0.06 0.02

0.02
-
+1.93 0.04

0.04 D

0.5–0.7 - -
+0.06 0.05

0.04
-
+1.71 0.04

0.05 O

0.7–1.0 - -
+0.10 0.05

0.07
-
+1.70 0.10

0.09 O

1.0–1.4 - -
+0.05 0.03

0.03
-
+1.92 0.05

0.06 O

Rp = Rp,0 ( )Å

S

S

m

100
inc 0.5–1.4 -

+0.06 0.01
0.01

-
+1.86 0.03

0.04 D

0.5–0.7 -
+0.07 0.04

0.02
-
+2.00 0.19

0.11 D

0.7–1.0 -
+0.10 0.04

0.04
-
+1.86 0.07

0.07 D

1.0–1.4 -
+0.05 0.01

0.01
-
+1.85 0.04

0.04 D

0.5–0.7 -
+0.06 0.03

0.02
-
+1.93 0.13

0.11 O

0.7–1.0 -
+0.08 0.04

0.04
-
+1.81 0.06

0.08 O

1.0–1.4 -
+0.05 0.01

0.01
-
+1.84 0.04

0.04 O

Rp = Rp,0 ( )M

M

m

1
0.5–1.4 -

+0.18 0.07
0.08

-
+1.86 0.03

0.03 D

Rp = m [Fe/H] + Rp,0 0.5–1.4 -
+0.01 0.06

0.05
-
+1.82 0.03

0.05 D

Note. We fit the radius gap in the detected planet population in Section 6.1 as a
function of orbital period, incident stellar flux, stellar mass, and stellar
metallicity (see Figure 7). We repeated the orbital period and incident flux fits
for narrower ranges of stellar mass (see Figures 8 and 9). We fit the radius gap
in the debiased planet occurrence distribution in Section 7.1 (see Figures 8 and
9). We elaborate on the following columns: “Fit” is the functional form of the
fit, “Må” is the range of stellar masses, and “Dist.” indicates whether the fit was
of the distribution of planet detections “D” or occurrence “O.”
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the right panels of Figure 8. The value at each (P, Rp) is the
number of planets per star in a 1 dex× 1 dex interval centered
at (P, Rp). It is convenient to scale this value to smaller
intervals because the ORD varies significantly over 1 dex in P
and Rp. For example, to read off the number of planets per star
within a box having the dimensions of the kernel FWHM,
multiply the ORD by 2.355× 0.3× 2.355× 0.02= 0.033.

We do not plot occurrence in regions of low planet
detectability, defined to be where á ñ <n p p 50tr det . The ORD
ranges from ≈zero to 4, which corresponds to ≈0–0.1 planets
star–1 within the kernel FWHM. For (P, Rp) values where

á ñ =n p p 50tr det , there are effectively 50 stars where such a
planet could be detected, and we would expect zero to five
detected planets within the kernel FWHM. At this point,
Poisson fluctuations become unmanageable.

We fit a power law to the radius gap for each mass bin. Our
methodology, power-law parameterization, fitting domain, and

uncertainty analysis are identical to those presented in
Section 6, except that we fit ORD rather than the density of
the detected planets. The credible range of values is given in
Table 3. The measured slope and intercepts are consistent at 1σ
to those measured using planet detections only.

7.2. Dependence of Planet Size on Stellar Mass

In Section 6.2, we noted a positive Rp–Må correlation for
sub-Neptunes that was not mirrored by super-Earths. However,
we must consider the possibility that such correlations (or lack
thereof) could stem from the Kepler selection function. To do
so, we first divided the CXM planet hosts and parent stellar
population into our three Må bins from Section 6.2. In order to
treat hosts and nonhosts equally, we used the B20 Må, which is
available for all stars.
Returning to our binned planet population, we computed the

occurrence-weighted mean planet sizes for sub-Neptunes

Figure 8. The left panels are analogous to Figure 7(a), except we have split the planet sample into three bins of stellar mass. The right panels show the ORD of planets
df d P d Rlog log p. The maximum ORD increases with decreasing Må (note different color scales). Regions of low planet detectability, defined as ntrial < 50, are
gray. The typical sub-Neptune size grows with Må, while super-Earths have a nearly constant size. The bands show fits to the radius gap.
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having P< 100 days and display them in Figure 11. Fitting the
power law given by Equation (6) to the three binned mean size
measurements shown in Figure 11 yields an index
α= 0.23± 0.04 and an intercept of Rp,0= 2.47± 0.03 R⊕

(uncertainties from bootstrap resampling). These values are
consistent with our fits to the population of detected planets
(Section 6.2). For the sub-Neptunes, the weights w are
dominated by geometrical corrections that are independent of
Rp. Planets with larger P have larger w and are more strongly
weighted than in Section 6.2. However, given the lack of a
significant tilt in the P–Rp distribution, the average value is
similar.

Corrections stemming from low detectability are larger for
the super-Earths. While there is no obvious tilt of the super-
Earth population in Figure 7(c), completeness effects could
conspire to produce a flat dependence when there is actually a
positive slope in the underlying population. We computed the
occurrence-weighted mean planet size for super-Earths with
P< 30 days and found α= −0.01± 0.03 and Rp,0= 1.34±

0.01, i.e., no significant correlation. We interpret the different
Rp–Må correlation super-Earths and sub-Neptunes and compare
our results to previous literature measurements in Section 8.

7.3. Orbital Period and Incident Flux Distributions

One key feature of the exoplanet population is the paucity of
sub-Neptunes with P 10 days, i.e., the “sub-Neptune desert.”
The edge of this desert is significant in both the core- and
XUV-powered models. It represents a boundary, inside of
which core-dominated planets (i.e., Mc?Menv) cannot retain
H/He envelopes and are completely stripped.
Here we characterize the edge of the sub-Neptune desert in

terms of period and flux and note how it changes with stellar
mass. One can see qualitatively from Figures 8 and 9 that the
edge of the sub-Neptune desert occurs at a similar P for all
mass bins but varies in Sinc by ∼10×. We first considered the
edge in period space in our three bins of stellar mass introduced
in Section 6.2. Quantitatively measuring this boundary in P by
visually inspecting Figure 8 is suboptimal for a number of

Figure 9. Same as Figure 8, except the x-axis is incident bolometric flux.
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reasons. First, the contours do not convey uncertainties.
Second, the Gaussian KDE used to generate the 2D distribu-
tions smears out sharp features in the P distributions. Third, the
sub-Neptune desert is the paucity of short-period sub-Neptunes
relative to long-period sub-Neptunes, but the contours show
absolute occurrence, which also varies with stellar mass. These
shortcomings motivated a different method, which we describe
below.

Within each Må bin, we modeled the ORD as

( ) ( )ql= 
df

dPdR
f P R, ; 10

p
p

over a rectangular domain of P and Rp. Here få is the mean
number of planets per star within the P–Rp domain. In
principle, λ may be any function that integrates to unity over
the same domain. We consider parametric functions described
by a vector of parameters θ that we will constrain through
Bayesian inference. In short, the free parameters få and θ

control the normalization and shape of the ORD, respectively.
Following previous works, we modeled the detected

population of planets as a realization of an inhomogeneous
Poisson point process (see, e.g., Rogers & Owen 2021, and
references therein). The log-likelihood of observing the full
sample is given by

[ ( )] ( )å l= -L + f P Rln ln , , 11
i

i p i,

where

∬ ( ) ( ) ( )h lL =  n f P R P R dPdR, , 12p p p

is the expected number of detected planets given få and θ.
Here h = á ñp ptr det .

For simplicity, we assumed that the period and radius
distributions are independent, i.e., λ(P, Rp)∝ λ(P)λ(Rp). We
also approximated the Rp distribution log-uniform within the Rp

boundaries, i.e., λ(Rp)∝ 1/Rp. We precomputed

( ) ( ) ( )òh h=
D

P
R

P R d R
1

ln
, ln 13

p
p p

to reduce Λ to a 1D integral,

( ) ( ) ( )ò h lL =  n f P P dP. 14

Following Rogers & Owen (2021), we described the period
distribution with a smooth broken power law,

( )
( ) ( )

( )l =
+- -

P
C

P P P P
, 15

k k
0 01 2

where C is the constant of proportionality that enforces
normalization.21 In this parameterized description, P0 is the
knee of the distribution; for P= P0, the distribution
approaches a power law with an index of k1, and for P? P0,
the index is k2.
We first fit the sub-Neptune distribution for our three bins of

stellar mass over P= 1–300 days. Our goal was to characterize
the knee and slope of the occurrence period distribution. For
consistency between the subsamples, we fixed k2= −1, i.e.,
log-uniform occurrence for P? P0. We maximized the
likelihood (Equation (11)) using the L-BFGS-B algorithm
and explored the credible range of parameters using the
MCMC sampler of Goodman & Weare (2010). We imposed
log-uniform priors on få and P0 and a linear prior on k1. We
sampled the posterior with eight walkers for 5000 steps each
and discarded the first 1000 as burn-in. The chains for all

Figure 10. Points show the recovery rate of the Kepler planet detection
pipeline of simulated planets injected by Christiansen et al. (2020) as a function
of MES. The curve shows the parametric model we used to account for pipeline
incompleteness in our occurrence calculations described in Section 7.

Figure 11. Mean size of super-Earths with P < 30 days and sub-Neptunes with
P < 100 days. Over Må = 0.5–1.4 Me, the average sub-Neptune grows from
2.1 to 2.6 R⊕ with a slope of a = d R d Mlog logp = 0.23 ± 0.04. The
mean super-Earth has a nearly constant size of 1.35 R⊕ with α =
−0.01 ± 0.03. Wu (2019) reported α = 0.25 for both populations and is
shown by the dashed lines. Our sub-Neptune results are consistent with this
index, but our super-Earth results are inconsistent at 8σ.

21 The normalization constant C is
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where 2F1 is the hypergeometric function.
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parameters were at least 50 times longer than the integrated
autocorrelation time, indicating convergence. Table 4 lists the
16th, 50th, and 84th percentiles of our posterior samples.
Figure 12 shows the posterior probability density of få and P0

for different Må bins.
Figure 13 shows the best-fit and credible range of models for

our three Må bins. They are similar except for an overall shift in
the normalization. For the low-, medium-, and high-mass bins,
the breakpoint P0 is at -

+7.0 1.1
1.4, -

+9.7 1.5
2.0, and -

+8.6 1.2
1.6 days,

respectively, consistent to 2σ. The power-law indices k1 agree
to 1σ and are -

+1.7 0.4
0.5, -

+1.5 0.3
0.4, and -

+2.2 ;0.5
0.6 we observed a steady

decrease in the absolute number of planets per star from 0.5 to
1.4Me of -

+1.37 0.18
0.19, to -

+0.79 0.08
0.08, to -

+0.41 0.04
0.04.

The similarity of P0 for the different mass bins is noteworthy
because it indicates a key boundary in the planet formation
process that is stationary over a wide range of stellar mass.
Naturally, a stationary P0 implies a variable Sinc,0 given the
relationship between Må and bolometric luminosity. To
quantify this boundary in flux space, we again characterized
the distribution as a smooth broken power law,

( )
( ) ( )

( )l =
+- -

S
C

S S S S
, 16

k kinc
inc inc,0 inc inc,01 2

but fixed k1 to −1. Over the threeMå bins, we observed a factor
of 9 increase in the breakpoint Sinc,0 from -

+27 6
6, to -

+70 14
16, to

-
+244 55

64 S⊕.
We also characterized the period distribution of super-

Earths. Our modeling was identical to that of the sub-Neptunes,
except we only included planets out to 30 days due to low
completeness at longer orbital periods. Here the breakpoint P0

increases with Må from -
+2.6 0.4

0.8, to -
+3.3 0.5

0.8, to -
+5.2 0.9

1.3 days. The
breakpoints in flux Sinc,0 occur at -

+89 31
35, -

+265 76
84, and -

+615 152
159

S⊕. Figure 14 contrasts the super-Earth and sub-Neptune
breakpoints. The super-Earth breakpoint is shifted to smaller
orbital periods and higher incident fluxes for all stellar-mass
bins. We interpret these shifts in Section 8.5.

8. Discussion

8.1. Positive Må–Rp Correlation Suggests Massive Stars Make
Massive Planet Cores

One of the striking features of Figure 7(c) is the divergence
of the super-Earth and sub-Neptune populations with stellar
mass; the sub-Neptunes grow larger, while the super-Earths do
not. When we modeled the size dependence of each population

as a power law, µ a
R Mp , we found α= 0.25± 0.03 and

0.02± 0.03, respectively. The slope of the radius gap in Må–Rp

space (displayed in Figure 7) lies between those two
values, = -

+m 0.18 0.07
0.08.

A positive sub-Neptune Rp–Må correlation has been noted in
several previous works. Fulton & Petigura (2018) observed
such a trend over a narrower stellar-mass range of
≈0.8–1.3Me. Later, Wu (2019) stitched together the Fulton
& Petigura (2018) sample with a compilation of ∼100 Kepler
and K2 planets with hosts of Må 0.7Me from Newton et al.
(2015) and Dressing et al. (2017) and reported α= 0.23–0.35,
consistent with what we found.
In contrast to the sub-Neptunes, we observe a flat super-

Earth Rp–Må dependence, α= −0.01± 0.03. This result differs
from that of Wu (2019), who reported α= 0.23–0.35. As a
point of comparison, Figure 11 shows our occurrence-weighted
mean super-Earth size with an α= 0.25 dependence over-
plotted; such a strong relationship is ruled out at 8σ
significance. The differences between the two works may stem
from the fact that Wu (2019) used an admixture of planet
samples with heterogeneously derived properties.
Berger et al. (2020a) offered a second point of comparison.

They derived properties of 2956 KOIs spanning
Må≈ 0.6–1.4Me that host 3898 confirmed/candidate planets.
They measured the radius gap slope in Må–Rp space and found

= -
+m 0.26 0.16

0.21, which is consistent with our measured value,
albeit with larger uncertainties.
What causes the super-Earth size to be independent of stellar

mass while the sub-Neptune size grows with stellar mass? In
our discussion below, we assume that planets between 1 and
4 R⊕ are Earth-composition bodies that may also include an H/
He envelope. This assumption is supported by the growing
body of mass measurements of planets in this size range (see,
e.g., Weiss & Marcy 2014; Sinukoff 2018). Most planets
smaller than 1.5 R⊕ have densities consistent with Earth-
composition bodies; most planets larger than 2.0 R⊕ are too
low-density to be rock/iron bodies and are consistent with
having H/He envelopes of fenv 1% by mass.
With this two-component model, both the XUV- and core-

powered models produce the radius gap. In the 1D, energy-
limited, XUV-powered models of Owen & Wu (2017), the
mass-loss timescale t = M MXUV is a strong function of fenv
and the local XUV flux. This timescale is maximized when the
size of the core and thickness of the envelope are approxi-
mately equal, i.e., Rp≈ 2Rc. This occurs at fenv,2≈ 3%. Planets
with less envelope experience accelerating mass loss; those

Table 4
Fits to the Planet Period and Flux Distributions

Period Flux

Size Må få P0 k1 få Sinc,0 k2

SE 0.5–0.7 -
+0.42 0.06

0.07
-
+2.6 0.4

0.8
-
+2.4 1.0

1.1
-
+0.33 0.05

0.06
-
+89 31

35 - -
+3.1 0.5

0.4

0.7–1.0 -
+0.22 0.02

0.03
-
+3.3 0.5

0.8
-
+1.5 0.5

0.6
-
+0.26 0.03

0.03
-
+265 76

84 - -
+2.6 0.3

0.3

1.0–1.4 -
+0.18 0.02

0.02
-
+5.2 0.9

1.3
-
+1.9 0.5

0.7
-
+0.28 0.03

0.04
-
+615 152

159 - -
+3.0 0.5

0.4

SN 0.5–0.7 -
+1.37 0.18

0.19
-
+7.0 1.1

1.4
-
+1.7 0.4

0.5
-
+1.13 0.14

0.16
-
+27 6

6 - -
+3.2 0.3

0.3

0.7–1.0 -
+0.79 0.08

0.08
-
+9.7 1.5

2.0
-
+1.5 0.3

0.4
-
+0.76 0.08

0.08
-
+70 14

16 - -
+3.1 0.3

0.3

1.0–1.4 -
+0.41 0.04

0.04
-
+8.6 1.2

1.6
-
+2.2 0.5

0.6
-
+0.52 0.05

0.06
-
+244 55

64 - -
+3.0 0.4

0.3

Note. In Section 7.3, we modeled both the period and flux distribution of super-Earths (SE) and sub-Neptunes (SN) for different bins of stellar mass. We used a
smooth broken power law to model the period distribution (( ) ( ) )µ +- - -df dP P P P Pk k

0 0
11 2 . Here få is the mean number of planets per star over the following

period ranges: P = 1–30 days (SE) and P = 1–300 days (SN). The power-law indices below and above the breakpoint P0 are k1 and k2, respectively. In our modeling,
k2 is fixed to −1, i.e., »df d Plog constant for P? P0. Similarly, we also used a smooth broken power law to model the flux distribution. Here k1 was fixed to −1.
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with more experience decelerating mass loss. Planets are
herded toward fenv= fenv,2 or fenv= 0 (bare cores).

In the XUV model, the fate of a planet’s envelope depends
on the time-integrated XUV exposure ò= F dtxuv xuv . This
quantity is strongly correlated with orbital period and weakly
correlated with stellar mass (Owen & Wu 2017). At a fixed
orbital period, planets around low-mass stars receive less
bolometric flux Fbol, but FXUV/Fbol is higher, and stars stay
XUV-active longer. McDonald et al. (2019) found

µ - F Mxuv bol
3. Applying the following relationships,

P2∝ a3/Må (Kepler’s third law), Fbol∝ Lå,bol/a
2, and

µ L M,bol
4 (Kippenhahn & Weigert 1990, for FGK and early

M stars), we find µ - M Pxuv
0.33 1.33.

If the XUV model is correct and the initial planet population
is independent of Må, we expect only minor sub-Neptune size
variability with Må. We can get a rough estimate of the
expected Rp–Må dependence at fixed P by considering the
amount of energy needed to unbind an fenv≈ 3% envelope:

( )~ µE GM M R M . 17c c cunb env
1.75

We have approximated the rocky mass–radius relationship as
µR Mc c

0.25. The XUV energy received by the planet is

approximately

( )p~ µ µ E F R F M M M . 18p c crec xuv
2

xuv
0.5 0.33 0.5

Equating the two energies yields µ M Mc
0.26 or µ µR Rc p

M 0.06, i.e., α≈ 0.06.
In the core-powered model of Gupta & Schlichting (2020),

planets with fenv< 5% have enough thermal energy in their
cores to unbind their envelopes and become bare rocky planets.
Thus, this process also works to clear the P–Rp plane of planets
with an fenv of a few percent or less. The fate of a planet’s
envelope depends on the mass flux at the Bondi radius RB, and
planets with smaller RB lose mass faster. Since RB∝Mc/Teq,
planets more readily lose their envelopes when Teq (or,
equivalently, Sinc) is large or Mc is small. If the core-powered
model is correct and the initial planet population is independent
of Må, we expect significant changes with Må because Sinc is a
strong function of Må. Gupta & Schlichting (2020) pre-
dicted α≈ 0.33.
It is tempting to interpret the larger sub-Neptunes around

massive stars as a direct result of higher-mass cores. One may,
for example, adopt a monotonically increasing mass–radius
relationship (e.g., Weiss & Marcy 2014), invert it, and infer
higher-mass sub-Neptunes around more massive stars. How-
ever, there is significant astrophysical scatter about the mean

Figure 12. Panel (a): posterior probability density of the mean number of sub-Neptunes per star få with P = 1–300 days for three stellar-mass bins. Dashed lines show
the 25%, 50%, and 75% quartiles. Panel (b) shows the period breakpoint P0. Panel (c) shows the flux breakpoint Sinc,0. Panels (d)–(f) are the same as panels (a)–(c) but
for super-Earths. The mean occurrence in panel (d) corresponds to P = 1–30 days. For both classes of planets, there is a decline in total occurrence with increasingMå.
For the sub-Neptunes, P0 ranges from ≈7.0 to 9.6 days, consistent to 40%; for the super-Earths, P0 is ≈2.7–5.1 days, consistent to a factor of 2. For the sub-Neptunes,
the breakpoint Sinc,0 increases by a factor of 9 from -

+27 6
6 to -

+244 55
64 S⊕ between the low- and high-mass bin. For the super-Earths, the breakpoint also increases with

stellar mass from -
+89 31

35 to -
+615 152

159 S⊕, a factor of 7 increase.
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mass–radius relationship (Wolfgang et al. 2016). Planets of
2–3 R⊕ have a nearly uniform distribution in mass from 5 to
20M⊕. In short, radius is not a good predictor of mass. It could
also be true that faster or more efficient gas accretion occurs in
the protoplanetary disks of massive stars because of differences
in gas surface density, ionization structure, or other properties.

With these caveats in mind, we can qualitatively explain the
increase in sub-Neptune sizes and constant super-Earth sizes in
both XUV- and core-powered models as a consequence of
more massive cores around more massive stars. We first
consider photoevaporation in a toy model shown in Figure 15.
Here the cores have a log-uniform mass distribution up to a
maximum cutoff mass of Mc,max. The maximum core mass is
proportional to stellar mass, µ M Mc,max . For simplicity, we
show two populations of host stars: (1) where Må,1≈ 0.6Me
and » ÅM M10c,max,1 and (2) where Må,2≈ 1.2Me and

» ÅM M20c,max,2 . At the time of disk dispersal (t∼ 10 Myr),
the cores have accreted H/He envelopes with a broad range of
fenv≈ 0.3%–30% and have a broad size distribution
Rp≈ 2–10 R⊕.

After the period of high XUV activity (t 100 Myr), cores
up to a critical mass Mc,crit are stripped bare, and the largest
super-Earth is given by ( )»Å ÅR R M Mse,max c,crit

0.25. Cores
above Mc,crit retain their envelopes, and mass loss concentrates

envelope fractions to fenv≈ 3%. The smallest sub-Neptunes
have cores that barely retained their envelopes and obey

( )»Å ÅR R M M2 ;sn,min c,crit
0.25 the largest sub-Neptunes have

an fenv≈ 3% envelope atop an Mc,max core and
obey ( )»Å ÅR R M M2sn,max c,max

0.25 .
This toy model reproduces some, but not all, of the observed

trends. Here µ M Mc,max , so µ R Msn,max
0.25, which is

consistent with the observed trend. Moreover, approximating
µ Mxuv

0.33 as constant over our mass range predicts a
constant Rse,max for different Må.
The fact that »R 1.7se,max R⊕ implies Mc,crit≈ 8 M⊕ and

»R 3.4sn,min R⊕. Given our assumed Mc,max, we find
»R 3.6sn,max and 4.2 R⊕. While these have the appropriate

dependence on Må, they exceed the upper envelope of the
observed sub-Neptunes. Note, however, that these sizes are at
t∼ 100Myr, and the observed planets are t≈ 1–10 Gyr and
will contract as they radiate away their heat of formation.
Gupta & Schlichting (2020) found that the radius of the
radiative–convective boundary (RCB) shrinks as d Rlog p

» -d tlog 0.1. So, over tlog = 8–9.7, we expect the planets to
shrink by 0.17 dex or 33%. The largest sub-Neptunes would
shrink to 2.2 and 2.8 R⊕ for the Må,1≈ 0.6 and Må,2≈ 1.2Me

populations, respectively, in rough agreement with

Figure 13. Panel (a): period distribution of sub-Neptunes for three bins of stellar mass. The points show the number of planets per star in period bins that are 0.25 dex
wide. We modeled the ORD df/dP as a smooth broken power law, which we fit to the unbinned planet population over P = 1–300 days (see Section 7.3). The bands
show the credible range of ´df d Plog 0.25 dex. The height of each curve at a particular P is the number of planets per star within a 0.25 dex period interval
centered at P. Panel (b): same as panel (a) except for super-Earths where the fits extend to 30 days. Panels (c) and (d): same as panels (a) and (b) except showing
incident flux distribution. The vertical axis has the following interpretation: number of planets per star within a 0.5 dex flux interval.
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observations. However, we note that we observed no age
dependence in the mean sub-Neptune size over tlog = 9–10,
and we comment on this discrepancy later.

Given the similarities between the core- and XUV-powered
models, this toy model may be easily adapted to the core-
powered model. The key difference is that the time of rapid
mass loss is t 1 Gyr, as opposed to t 100Myr.

To summarize, the Rp–Må correlation observed for super-
Earths and sub-Neptunes is broadly consistent with a maximum
core mass that increases withMå. The µ R Mp

0.25 trend suggests
anMc∝Må relationship. A linear relationship between core mass
and host star mass has also been suggested by Wu (2019) and
Berger et al. (2020a).

Why should core mass increase with host star mass? One
explanation could be that the core formation process is dust-
limited and that the available dust mass Mdust grows with stellar
mass. Pascucci et al. (2016) derived Mdust in protoplanetary disks
from ALMA observations at ∼1mm and found a superlinear
relationship with stellar mass ( )µ -

M Mdust
1.3 1.9 with a large

0.8 dex dispersion about this relationship. It is not clear, however,
if core formation is dust-limited due to the difficulties of inferring
the total inventories of solids from millimeter emission. Wu
(2019) offered a different interpretation, positing that planet cores
form at a “thermal mass” Mth, the mass at which a planet’s Hill
sphere equals the disk scale height, µ M Mth

11 8, which is close
to the inferred Mc∝Må dependence.

8.2. Absence of Size–Metallicity Trend Suggests Weak
Connection between Envelope Opacity and Stellar Metallicity

Models of sub-Neptunes depend on the envelope opacity κ,
which sets the cooling rate and location of the RCB and thus
the planet’s size. Higher-opacity envelopes cool and contract
more slowly.
In their core-powered models, Gupta & Schlichting (2020)

assumed κ∝ Z, where Z is the bulk stellar metallicity. To
isolate the effects of metallicity, they constructed a population
of planets with Må fixed at 1.0Me and [Fe/H] ranging from
−0.5 to +0.5 and evolved them for 3 Gyr. The final population
is shown in their Figure 9 and reproduced here in Figure 16. In
the models, sub-Neptune size increases with stellar metallicity
as Rp∝ Zβ, with β= 0.1. In contrast, in Section 6.2, we
measured β= −0.01± 0.02, which rules out the predicted
β= 0.1 at 4σ significance.
For visual comparison, we reproduced Figure 7(d) in

Figure 16 with a β= 0.1 relationship overplotted. The CXM
distribution is peaked near [Fe/H]= 0.0, but no tilt is
observable. To visually enhance the tails of the metallicity
distribution, we normalized the density by the integrated
density along vertical columns. Both super-Earths and sub-
Neptunes show no significant size–metallicity dependence.
Our results suggest that the dominant opacity at the RCB

does not track stellar metallicity. The tension between the
observations and the Gupta & Schlichting (2020) model does

Figure 14. Panels (a)–(c): period distribution of super-Earths (green) and sub-Neptunes (blue) for different bins of stellar mass. Points and curves are the same as
shown in Figure 13 but grouped according to stellar mass as opposed to planet size. The vertical bands show the range of credible period breakpoints P0. For all stellar-
mass bins, P0 is smaller for super-Earths than for sub-Neptunes. Panels (d)–(f): same as panels (a)–(c), but the x-axis is incident stellar flux. The flux breakpoint Sinc,0
increases with stellar mass, but the relative offset between the two populations is nearly constant.
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not reflect an insurmountable obstacle for core-powered theory
but does suggest a modification to the opacity treatment. We
also note that the XUV-powered models of Owen & Wu (2017)
also assumed a κ∝ Z relationship.

8.3. Age Effects

After the period of rapid mass loss, we expect the sizes of the
sub-Neptunes to decrease due to the Kelvin–Helmholtz
mechanism. In Section 6.2, we found Rp∝ (age/5 Gyr)γ with
γ= −0.01± 0.03, consistent with no Rp–age collocation. This
flat age dependence is interesting given that several studies
have noted that planets younger than 100Myr seem to have
inflated envelopes. In a recent compilation of nine planets with
cluster-based ages under 100Myr by Bouma et al. (2020), all
were between 4 and 10 R⊕. Rizzuto et al. (2018) and David
et al. (2019) made a similar observation among earlier
compilations.

Planets in this size range are intrinsically rare among field-
age stars. As a point of reference, for P< 100 days, Petigura
et al. (2018a) measured an occurrence rate of 0.04 planets star–1

with Rp= 4.0–11.3 R⊕ versus 0.64 planets star–1 with
Rp= 1–4 R⊕ among stars with Må≈ 0.8–1.3 Me. Yet V1298
Tau, a 20–30Myr solar-mass star, hosts four planets with sizes
ranging from 5 to 10 R⊕ (David et al. 2019). Planets in this size

range are even rarer among low-mass stars. Dressing &
Charbonneau (2013) measured an occurrence rate of 0.007
planets star–1 with Rp= 4.0–11.3 R⊕ and P< 50 days in a
sample of stars with Må≈ 0.4–0.6 Me. Yet K2-33 is a
5–10Myr, 0.4Me star that hosts a 6 R⊕ planet (David et al.
2016).
Given the evidence for inflated planets younger than

100Myr in the literature combined with the flat Rp–age
relationship observed here for ages spanning 1–10 Gyr, we
conclude that large-scale evolution in the size of sub-Neptune
envelopes concludes by ∼1 Gyr.
The envelopes may continue to contract after ∼1 Gyr, but

the Rp–age trends may be too subtle to detect given our sample
size and age uncertainties. For example, Gupta & Schlichting
(2020) isolated the age effect in the core-powered context by
constructing a planet population with Må and [Fe/H] held fixed
at 1.0Me and 0.0 dex and evolved them from 1 to 10 Gyr (their
Figure 10, reproduced here in Figure 16). In this model, the
planets obeyed a γ= −0.1 relationship. However, errors in the
measured ages will conspire to flatten such a trend. We
explored this effect by injecting a γ= −0.1 dependence into
the observed sub-Neptune population, perturbing their ages by
their uncertainties, and refitting our power-law model. We
found γ= −0.06, which is consistent with our measured value

Figure 15. Toy model to explore how a correlation between host star mass Må and planet core mass Mc impacts super-Earth and sub-Neptune sizes when
photoevaporation drives mass loss. Panels (a)–(c) show the distributions of Mc, envelope fraction fenv, and planet size Rp at the time of disk dispersal (t ∼ 10 Myr).
Here low-mass stars have a lower maximum core mass than high-mass stars: for Må ≈ 0.6 Me, » ÅM M10 ;c,max,1 for Må ≈ 1.2 Me, » ÅM M20c,max,2 . Planets have a
broad distribution of envelope fractions fenv ≈ 0.3%–30% and a broad distribution of sizes. Panels (d)–(f) show the same properties after the period of rapid
photoevaporation (t ∼ 100 Myr). Cores up to Mcrit have been stripped bare. We have approximated the time-integrated XUV flux to be independent of Må, so Mcrit is
also independent of Må (see Section 8.1). Photoevaporation bifurcates the fenv distribution into two modes with fenv ≈ 0% and 3%. The largest super-Earths have

( )»Å ÅR R M Mcrit crit
0.25, so Rcrit is independent ofMå. The smallest sub-Neptunes barely retained their envelopes and have Rp ≈ 2Rcrit. The largest sub-Neptune size

is set by an fenv ≈ 3% envelope atop an Mc,max core or ( )= ÅR M M2max c,max
0.25 . Since µ M Mc,max , µ R Mmax

0.25. The model is equally applicable to the core-
powered framework, except mass is lost over ∼1 Gyr timescales.
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of γ= −0.01± 0.03 at the 2σ level. Thus, we cannot rule out
the subtle γ= −0.1 dependence predicted by Gupta &
Schlichting (2020) given our current sample size and age
uncertainties.

8.4. Slope of the Radius Gap in Period–Radius Space

While a number of theoretical models can produce the radius
gap, they do not produce identical slopes in the P–Rp plane.
Thus, the slope of the radius gap has emerged as a potential
discriminant between different models. In the Owen & Wu
(2017) photoevaporation model, the maximum size of a super-

Earth decreases with orbital period. The upper envelope is set
by the size of a rocky core that is barely stripped by the
integrated XUV exposure. Slightly more massive cores retain
their envelopes and remain sub-Neptunes.
At larger orbital periods, xuv decreases, and the cores that

can be completely stripped have lower masses and smaller
sizes. Assuming a fixed energy-limited efficiency factor
η= 10%, Owen & Wu (2017) predicted that the bottom of
the radius gap will follow Rp∝ Pm with m= −0.25.
Realistically, η should decline as mass increases, since
escaping gas has more time to cool as it climbs out of a

Figure 16. Panel (a): predicted planet sizes as a function of stellar metallicity in the core-powered models of Gupta & Schlichting (2020). Here Må and age were fixed
at 1.0 Me and 3 Gyr. Panel (c): relative number density of detected planets (not occurrence). Panel (e): same as panel (c), except we have normalized the number
density by its integral along columns of constant [Fe/H] to accentual features at low/high [Fe/H]. In the Gupta & Schlichting (2020) models, the typical sub-Neptune
is expected to grow with metallicity according to Rp ∝ Zβ, with β = 0.1. We observed β = −0.01 ± 0.02 and show the predicted β = 0.1 dependence for comparison
in panels (c) and (e). The lack of detectable variation in sub-Neptune size with metallicity when such a trend is predicted in the core-powered models points to missing
or incomplete physics, perhaps involving the treatment of envelope opacity (see Section 8.2). Panel (b): same as panel (a) except that Må and [Fe/H] were fixed to
1.0 Me and 0.0 dex, and age was allowed to vary. Panels (d) and (f): same as panels (c) and (e) except for age. The sub-Neptunes are expected to shrink with time
according to Rp ∝ t γ, with γ = −0.1. While we observed γ = −0.01 ± 0.03, we could not conclusively rule out a γ = −0.1 dependence given the age uncertainties
(see Section 8.3).
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deeper potential well. Adopting ( )h = - -v10% 15 km sesc
1 2

yields a shallower slope, m= −0.16.
In the core-powered framework of Gupta & Schlichting

(2019), the fate of an envelope around a planet with P 8 days
depends on the cooling timescale tcool= E/L relative to the
envelope mass-loss timescale =t M Mloss env . Envelopes that
escape faster than they cool, tloss< tcool, are lost completely.
The mass-loss timescale depends on M at the Bondi radius, and

( )rµt M R c GM c Rexps s p sloss env
2

rcb
2

rcb , where Rs is the sonic
point and cs is the sound speed. The cooling timescale may be
computed by dividing the combined thermal and gravitational
energy of the envelope and core by the luminosity evaluated at
the RCB. The exponential behavior of tloss results in the
dividing line tloss= tcool being set by =GM c R constantp s

2
rcb ,

which implies Rp∝ P−0.11 or m= −0.11.
We emphasize that the values of m predicted by the core-

and XUV-powered models discussed above have all incorpo-
rated assumptions about the properties of planet cores, such as
the distribution of masses, orbital periods, and bulk composi-
tions. Rogers et al. (2021) showed how changing these input
parameters can alter the predicted m. However, both the core-
and XUV-powered models categorically predict a negative
slope.

Models that delay the accretion of gas until the nebula is
nearly or completely dissipated predict an increasing slope with
orbital period. Here the core mass is determined by the solid
surface density profile within a feeding zone that is propor-
tional to the Hill radius ( )µ R a M MpH

1 3. A Hayashi (1981)
profile Σ(a)∝ a−3/2 yields µ -

M a Mp
0.6 0.5, µ -

R P Mp
0.11 0.09,

or m= 0.11.
For the full CXM sample, we measured m=- -

+0.11 0.02
0.02. Van

Eylen et al. (2018) fit the gap in a sample of 117 planets
orbiting 75 stars with asteroseismic detections and found
m=- -

+0.09 0.04
0.02. Their population of stellar hosts most closely

resembles a combination of our middle- and high-mass bins,
for which we measured m=- -

+0.13 0.06
0.07 and- -

+0.06 0.02
0.02, which

straddle the Van Eylen et al. (2018) value. Martinez et al.
(2019) performed an independent analysis of CKS DR1 spectra
including parallax constraints and found m= −0.11± 0.02.
Despite differences in the planets used, planet/star parameter
provenance, and slope measurement technique, our measure-
ments of slope are consistent with the Van Eylen et al. (2018)
and Martinez et al. (2019) measurements and the core- and
XUV-powered model predictions.

Shifting our attention to low-mass stars, we resolved the
radius gap among the 185 planets in our low stellar mass bin
Må= 0.5–0.7Me. We measured m=- -

+0.12 0.04
0.06, consistent

with that of the full sample. As a point of comparison, Cloutier
& Menou (2020) measured the occurrence of planets in a
sample of stars having Teff< 4700 K drawn from Kepler and
K2 (275 and 53 planets). The host stars were
Må= 0.08–0.93Me, but most were between 0.5 and 0.8Me.
They resolved the radius gap and measured a positive slope in
P–Rp space of m= 0.058± 0.022. They interpreted this as a
signature of gas-poor formation channels around lower-mass
stars. However, the radius gap is only visible in their full 328-
planet sample, but not when they restrict their analysis to the
126 planets around Må= 0.08–0.65Me hosts (their Figure 12).
Our measured slope is ≈4σ lower than that of Cloutier &
Menou (2020). We found no evidence of a change of slope and
thus do not favor an alternate formation pathway for planets
around Må= 0.5–0.7Me stars. Van Eylen et al. (2021) arrived

at a similar conclusion after analyzing a sample of 27 planets
orbiting stars with Teff< 4000 K.
Before concluding this section, we wish to remark on some

of the challenges associated with using the slope of the radius
gap as a signpost of formation. Note that our uncertainties on m
are larger than those of Martinez et al. (2019), even though we
resolved the valley at higher contrast (compare our Figure 7 to
their Figure 12). One may understand this through the
following limiting case. Consider super-Earth/sub-Neptune
populations separated by a gap completely devoid of planets. In
such a scenario, selecting the minima used to fit the radius gap
in Section 6.1 is ill-poised because there is no longer a single
minimum Rp. Thus, a broad range of Rp,0 and m are allowed.
Thus, the statistic for assessing model predictions has the
undesirable quality of becoming more uncertain as observa-
tional uncertainties improve.
Moreover, there is no standard approach to fitting the

absence of planets. For example, Van Eylen et al. (2018) used a
support vector machine scheme, Berger et al. (2020a) used the
“gapfit” code that subtracts off a trial Rp∝ Pm relationship and
evaluates a 1D KDE of the residuals, and Martinez et al. (2019)
and this work fit a train of minima computed along 1D
projections through the P–Rp plane. All approaches rely on an
ad hoc smoothing parameter that determines the relative
influence of the few planets near the edge of the gap relative
to the many planets far from the gap on the fit. These
differences in fitting method are less troublesome in theoretical
studies that can model limitless numbers of planets and do not
contend with complications like false-positive contamination or
mischaracterized measurement uncertainties.
Recently, Rogers & Owen (2021) introduced a different

framework for evaluating the agreement between formation
theory and the observed planet population that does not rely on
measuring the slope of the gap. Here a model planet population
is subjected to a specified set of physical processes, e.g., XUV-
or core-powered mass loss. The synthetic population is
transformed into an ORD distribution. This is then converted
into a number rate density distribution by accounting for
properties of the parent stellar population and losses due to
nontransiting planets and pipeline incompleteness. In this
framework, one evaluates the likelihood that the observed
planets are a realization of an inhomogeneous Poisson point
process with the specified number rate density. One may then
optimize the model parameters and characterize their uncer-
tainties using standard techniques. Such a treatment of the
CXM sample would be interesting but is beyond the scope of
this paper.

8.5. Period–Flux Distribution of Planets

In Section 7.3, we characterized the period distribution of
super-Earths and sub-Neptunes dN dP in three bins of stellar
mass. We parameterized these distributions as smooth broken
power laws with variable breakpoints P0. From Må= 0.5 t0
1.4Me, the sub-Neptune falloff occurs at a nearly constant
P0≈ 10 days. Similarly, when we modeled the flux distribu-
tion, dN dSinc, we found that Sinc,0 increases by nearly an order
of magnitude, from ≈20 to 200 S⊕.
Under the assumptions that planet cores (1) are uniformly

distributed in log-period and (2) have masses that are
uncorrelated with Må, the above observation would be strong
evidence for XUV-powered and against core-powered mass
loss. As we explain in Section 8.1, µ Mxuv

0.33 and thus only
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varies by 40% over our full mass stellar range. Thus, the critical
xuv that strips the typical sub-Neptune maps to a P0 that is
constant withMå. A fixed P0 corresponds to an Sinc,0 that grows
with Må. Under the same assumptions, Sinc,0 should be constant
with Må in the core-powered model.

Neither of the above assumptions, however, appear to be
correct. The steep decline in super-Earths for P P0≈ 5 days
suggests that rocky cores struggle to form inside this boundary.
Several mechanisms may be responsible, including magneto-
spheric truncation of the inner disk (e.g., Lee & Chiang 2017)
or a pressure trap due a silicate sublimation front (e.g., Flock
et al. 2019). Moreover, the Må–Rp correlation discussed in
Section 8.1 suggests that massive stars make massive cores.

Therefore, we cannot rule out the core-powered model based
on the dependence of P0 and Sinc,0 on Må. In this framework,
stars that are 1.0–1.4Me efficiently produce sub-Neptunes
when Sinc Sinc,0≈ 200 S⊕. Stars that are 0.5–0.7Me only
efficiently produce sub-Neptunes when Sinc Sinc,0≈ 20 S⊕.
The lack of sub-Neptunes in the Sinc≈ 20–200 S⊕ range is not
due to envelope stripping but rather to the absence of suitable
cores. Inspecting Figure 13, we see that the ORD of super-
Earths declines by a factor of 5 over Sinc= 20–200 S⊕.

There is still considerable uncertainty in the distribution of
core masses and further uncertainty in how that distribution
varies with P and Må. Given these unknowns, both core- and
XUV-powered frameworks appear sufficiently flexible to
match the observations. Additional mass measurements of
sub-Neptunes as a function of P–Sinc–Må should help to
constrain the models, since Rp and Mp together constrain both
core mass and envelope fraction.

9. Summary and Conclusion

Here we provide a brief summary of our results and point
toward future improvements to this work.

1. We augmented the 1305-star CKS DR1 spectral library
with DR2 containing 411 new spectra.

2. We performed a homogeneous analysis of the combined
DR1 and DR2 samples and derived Teff, [Fe/H], v isin ,
Må, Rå, and age.

3. We constructed a curated sample of 970 planets orbiting
703 stars with updated star/planet properties.

4. We resolved the radius gap and projected the planet
population as a function of P, Sinc, Må, [Fe/H], and age.

5. The radius gap in the P–Rp plane follows Rp∝ Pm with
m= −0.10± 0.03, consistent with both core- and XUV-
powered models but inconsistent with gas-poor formation
models.

6. We observed no significant change in m over 0.5–1.4Me.
7. Sub-Neptunes tend to be larger around higher-mass stars

and follow ( )µ a
R M Mp with α= 0.25± 0.03. The

super-Earths exhibit no measurable Må dependence
α= 0.02± 0.03. Taken together, these trends are con-
sistent with a core mass distribution that scales linearly
with stellar mass Mc∝Må.

8. The average sub-Neptune is not measurably larger around
higher-metallicity stars, disfavoring a simple linear
relationship between envelope opacity and stellar metal-
licity κ∝ Z.

9. The average sub-Neptune does not measurably shrink
over 1–10 Gyr. Given the large radii observed among
stars younger than 100Myr, we conclude that the

majority of planet radius contraction concludes
by ∼1 Gyr.

10. The period distribution of sub-Neptunes has a breakpoint
P0 in Må. This is consistent with the predictions of
photoevaporation models. However, core-powered mod-
els may still be viable given the uncertainties in the
underlying distribution of planet cores.

The bifurcation of small planets into two distinct populations
was one of the most intriguing results from the Kepler mission.
This feature appears most consistent with models where close-
in planets acquire and lose H/He envelopes. The XUV
radiation from young stars or heat from cooling cores are
leading candidates for the energy source that powers this mass
loss. While we worked to identify the dominant mass-loss
process, we found that both mechanisms are flexible enough to
match our observations.
We look forward to additional observational and theoretical

work that could help discriminate between these two theories.
With Gaia, it will soon be possible to extend the analysis
presented here to a larger sample of planets (2–3×). Future
Gaia data releases will include low- and high-resolution spectra
for nearly all Kepler stars. These data will increase the upper
Må limit, since rapid rotation above 6500 K does not wash out
broadband spectral energy distribution information. Gaia-based
refinements in Teff and [Fe/H] will be especially useful in
determining masses and ages for additional early-type stars.
However, increases in sample size from Gaia may not settle the
core-powered versus XUV-powered question. An analysis of
synthetic planet populations by Rogers et al. (2021) suggested
that 5000 planets are needed to do so.
We found that heuristic descriptions of the radius gap, such

as its slope in the P–Rp plane, were neither straightforward to
compute nor straightforward to compare to model predictions,
which are based on a previous occurrence analysis. The
disconnect between the demographic analysis and the popula-
tion modeling leads to concerns of self-inconsistency. The
modeling approach of Rogers & Owen (2021) offers a firmer
statistical basis for comparing models and observations. This
approach can also naturally accommodate realistic noninde-
pendent distributions of host star properties like mass,
metallicity, and age.
Aside from improved host star properties, additional planet

observables should shed light on the mass-loss process. Mass
measurements of transiting planets spanning P, Sinc, [Fe/H],
and age will help constrain the core mass distribution that
contributes to the remaining flexibility of both models, since
mass and radius together constrain core mass and envelope
fraction. Finally, direct measurements of mass loss as a
function of the same properties would be especially valuable.
Outflows from a handful of planets have been recently detected
using the He 10830Å line, and Gupta & Schlichting (2021)
have highlighted a number of planets that may actively be
experiencing mass loss in the core-powered framework.
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