40 research outputs found

    The Pioneer Anomaly

    Get PDF
    Radio-metric Doppler tracking data received from the Pioneer 10 and 11 spacecraft from heliocentric distances of 20-70 AU has consistently indicated the presence of a small, anomalous, blue-shifted frequency drift uniformly changing with a rate of ~6 x 10^{-9} Hz/s. Ultimately, the drift was interpreted as a constant sunward deceleration of each particular spacecraft at the level of a_P = (8.74 +/- 1.33) x 10^{-10} m/s^2. This apparent violation of the Newton's gravitational inverse-square law has become known as the Pioneer anomaly; the nature of this anomaly remains unexplained. In this review, we summarize the current knowledge of the physical properties of the anomaly and the conditions that led to its detection and characterization. We review various mechanisms proposed to explain the anomaly and discuss the current state of efforts to determine its nature. A comprehensive new investigation of the anomalous behavior of the two Pioneers has begun recently. The new efforts rely on the much-extended set of radio-metric Doppler data for both spacecraft in conjunction with the newly available complete record of their telemetry files and a large archive of original project documentation. As the new study is yet to report its findings, this review provides the necessary background for the new results to appear in the near future. In particular, we provide a significant amount of information on the design, operations and behavior of the two Pioneers during their entire missions, including descriptions of various data formats and techniques used for their navigation and radio-science data analysis. As most of this information was recovered relatively recently, it was not used in the previous studies of the Pioneer anomaly, but it is critical for the new investigation.Comment: 165 pages, 40 figures, 16 tables; accepted for publication in Living Reviews in Relativit

    QCD and strongly coupled gauge theories : challenges and perspectives

    Get PDF
    We highlight the progress, current status, and open challenges of QCD-driven physics, in theory and in experiment. We discuss how the strong interaction is intimately connected to a broad sweep of physical problems, in settings ranging from astrophysics and cosmology to strongly coupled, complex systems in particle and condensed-matter physics, as well as to searches for physics beyond the Standard Model. We also discuss how success in describing the strong interaction impacts other fields, and, in turn, how such subjects can impact studies of the strong interaction. In the course of the work we offer a perspective on the many research streams which flow into and out of QCD, as well as a vision for future developments.Peer reviewe

    Mechanisms of Action of Currently Prescribed and Newly Developed Antiepileptic Drugs

    Full text link
    Clinically available antiepileptic drugs (AEDs) decrease membrane excitability by interacting with neurotransmitter receptors or ion channels. AEDs developed before 1980 appear to act on sodium (Na) channels, -y-aminobutyric acid A (GABA A ) receptors, or calcium (Ca) channels. Benzodiazepines and barbiturates enhance GABA A -receptor-mediated inhibition. Phenytoin, car-bamazepine and, possibly, valproate (VPA) decrease high-frequency repetitive firing of action potentials by enhancing Na channel inactivation. Ethosuximide and VPA reduce a low threshold (T-type) Ca-channel current. The mechanisms of action of recently developed AEDs are less clear. Lamotrigine may decrease sustained high-frequency repetitive firing of voltage-dependent Na action potentials, and gabapentin (GBP) appears to bind to a specific binding site in the CNS with a restricted regional distribution. However, the identity of the binding site and the mechanism of action of GBP remain uncertain. The antiepileptic effect of felbamate may involve interaction at the strychnine-insensitive glycine site of the Af-methyl-D-aspartate receptor, but the mechanism of action is not yet proven.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/65554/1/j.1528-1157.1994.tb05955.x.pd

    Good Reasons and Natural Ends: Rosalind Hursthouse's Hermeneutical Naturalism

    Get PDF
    My aims are exegetical rather than critical: I offer a systematic account of Hursthouse's ethical naturalism with an emphasis on the normative authority of the four ends, and try to correct some misconceptions found in the literature. Specifically, I argue that the four ends function akin to Wittgensteinian hinge-propositions for our practice of ethical reasoning and as such form part of a description of the logical grammar of said practice

    A next-generation liquid xenon observatory for dark matter and neutrino physics

    Get PDF
    The nature of dark matter and properties of neutrinos are among the most pressing issues in contemporary particle physics. The dual-phase xenon time-projection chamber is the leading technology to cover the available parameter space for weakly interacting massive particles, while featuring extensive sensitivity to many alternative dark matter candidates. These detectors can also study neutrinos through neutrinoless double-beta decay and through a variety of astrophysical sources. A next-generation xenon-based detector will therefore be a true multi-purpose observatory to significantly advance particle physics, nuclear physics, astrophysics, solar physics, and cosmology. This review article presents the science cases for such a detector

    Practically Self-Conscious Life

    No full text
    corecore