58 research outputs found
Gravity modes as a way to distinguish between hydrogen- and helium-burning red giant stars
Red giants are evolved stars that have exhausted the supply of hydrogen in
their cores and instead burn hydrogen in a surrounding shell. Once a red giant
is sufficiently evolved, the helium in the core also undergoes fusion.
Outstanding issues in our understanding of red giants include uncertainties in
the amount of mass lost at the surface before helium ignition and the amount of
internal mixing from rotation and other processes. Progress is hampered by our
inability to distinguish between red giants burning helium in the core and
those still only burning hydrogen in a shell. Asteroseismology offers a way
forward, being a powerful tool for probing the internal structures of stars
using their natural oscillation frequencies. Here we report observations of
gravity-mode period spacings in red giants that permit a distinction between
evolutionary stages to be made. We use high-precision photometry obtained with
the Kepler spacecraft over more than a year to measure oscillations in several
hundred red giants. We find many stars whose dipole modes show sequences with
approximately regular period spacings. These stars fall into two clear groups,
allowing us to distinguish unambiguously between hydrogen-shell-burning stars
(period spacing mostly about 50 seconds) and those that are also burning helium
(period spacing about 100 to 300 seconds).Comment: to appear as a Letter to Natur
Recommended from our members
Safeguarding pollinators and their values to human well-being
Wild and managed pollinators provide a wide range of benefits to society in terms of contributions to food security, farmer
and beekeeper livelihoods, social and cultural values, as well as the maintenance of wider biodiversity and ecosystem
stability. Pollinators face numerous threats, including changes in land-use and management intensity, climate change,
pesticides and genetically modified crops, pollinator management and pathogens, and invasive alien species. There are
well-documented declines in some wild and managed pollinators in several regions of the world. However, many effective
policy and management responses can be implemented to safeguard pollinators and sustain pollination services
A custom-built step exergame training programme to prevent falls in people with multiple sclerosis: A multicentre randomised controlled trial
Background: Cognitive-motor step training can improve stepping, balance and mobility in people with multiple sclerosis (MS), but effectiveness in preventing falls has not been demonstrated. Objectives: This multisite randomised controlled trial aimed to determine whether 6 months of home-based step exergame training could reduce falls and improve associated risk factors compared with usual care in people with MS. Methods: In total, 461 people with MS aged 22–81 years were randomly allocated to usual care (control) or unsupervised home-based step exergame training (120 minutes/week) for 6 months. The primary outcome was rate of falls over 6 months from randomisation. Secondary outcomes included physical, cognitive and psychosocial function at 6 months and falls over 12 months. Results: Mean (standard deviation (SD)) weekly training duration was 70 (51) minutes over 6 months. Fall rates did not differ between intervention and control groups (incidence rates (95% confidence interval (CI)): 2.13 (1.57–2.69) versus 2.24 (1.35–3.13), respectively, incidence rate ratio: 0.96 (95% CI: 0.69–1.34, p = 0.816)). Intervention participants performed faster in tests of choice-stepping reaction time at 6 months. No serious training-related adverse events were reported. Conclusion: The step exergame training programme did not reduce falls among people with MS. However, it significantly improved choice-stepping reaction time which is critical to ambulate safely in daily life environment
Fast core rotation in red-giant stars revealed by gravity-dominated mixed modes
When the core hydrogen is exhausted during stellar evolution, the central
region of a star contracts and the outer envelope expands and cools, giving
rise to a red giant, in which convection occupies a large fraction of the star.
Conservation of angular momentum requires that the cores of these stars rotate
faster than their envelopes, and indirect evidence supports this. Information
about the angular momentum distribution is inaccessible to direct observations,
but it can be extracted from the effect of rotation on oscillation modes that
probe the stellar interior. Here, we report the detection of non-rigid rotation
in the interiors of red-giant stars by exploiting the rotational frequency
splitting of recently detected mixed modes. We demonstrate an increasing
rotation rate from the surface of the star to the stellar core. Comparing with
theoretical stellar models, we conclude that the core must rotate at least ten
times faster than the surface. This observational result confirms the
theoretical prediction of a steep gradient in the rotation profile towards the
deep stellar interior.Comment: to appear as a Letter to Natur
Native aggregation as a cause of origin of temporary cellular structures needed for all forms of cellular activity, signaling and transformations
According to the hypothesis explored in this paper, native aggregation is genetically controlled (programmed) reversible aggregation that occurs when interacting proteins form new temporary structures through highly specific interactions. It is assumed that Anfinsen's dogma may be extended to protein aggregation: composition and amino acid sequence determine not only the secondary and tertiary structure of single protein, but also the structure of protein aggregates (associates). Cell function is considered as a transition between two states (two states model), the resting state and state of activity (this applies to the cell as a whole and to its individual structures). In the resting state, the key proteins are found in the following inactive forms: natively unfolded and globular. When the cell is activated, secondary structures appear in natively unfolded proteins (including unfolded regions in other proteins), and globular proteins begin to melt and their secondary structures become available for interaction with the secondary structures of other proteins. These temporary secondary structures provide a means for highly specific interactions between proteins. As a result, native aggregation creates temporary structures necessary for cell activity
The role of the mitochondria and the endoplasmic reticulum contact sites in the development of the immune responses
Abstract Mitochondria and endoplasmic reticulum (ER) contact sites (MERCs) are dynamic modules enriched in subset of lipids and specialized proteins that determine their structure and functions. The MERCs regulate lipid transfer, autophagosome formation, mitochondrial fission, Ca2+ homeostasis and apoptosis. Since these functions are essential for cell biology, it is therefore not surprising that MERCs also play a critical role in organ physiology among which the immune system stands by its critical host defense function. This defense system must discriminate and tolerate host cells and beneficial commensal microorganisms while eliminating pathogenic ones in order to preserve normal homeostasis. To meet this goal, the immune system has two lines of defense. First, the fast acting but unspecific innate immune system relies on anatomical physical barriers and subsets of hematopoietically derived cells expressing germline-encoded receptors called pattern recognition receptors (PRR) recognizing conserved motifs on the pathogens. Second, the slower but very specific adaptive immune response is added to complement innate immunity. Adaptive immunity relies on another set of specialized cells, the lymphocytes, harboring receptors requiring somatic recombination to be expressed. Both innate and adaptive immune cells must be activated to phagocytose and process pathogens, migrate, proliferate, release soluble factors and destroy infected cells. Some of these functions are strongly dependent on lipid transfer, autophagosome formation, mitochondrial fission, and Ca2+ flux; this indicates that MERCs could regulate immunity
An Electronic Adherence Measurement Intervention to Reduce Clinical Inertia in the Treatment of Uncontrolled Hypertension: The MATCH Cluster Randomized Clinical Trial
Gene-trait matching across the Bifidobacterium longum pan-genome reveals considerable diversity in carbohydrate catabolism among human infant strains
Accounting for quality in Australia’s research assessment exercise
Sardesai, AV ORCiD: 0000-0001-6794-4549This paper explores the evolution and the role accounting for quality plays in the academic journal articles submitted to Australia’s Excellence in Research for Australia (ERA) assessment exercise. It tracks the progress from quantitative to qualitative assessment within the Australian higher education sector from 1970 leading up to the implementation of a formal research assessment exercise in 2010, and its subsequent iterations in 2012, 2015, and 2018. Although only a part of the ERA submissions, the listing of published research outputs provides the primary evidence for research quality to most ERA panels, and is a significant driver of the final rating awarded. The developing role of journal publications as a vehicle for academic research output is examined via a chronology of the ERA, before assessing the current situation in which published journal output formed almost 70% of all output assessed by the ERA panels in the 2015 exercise
Mutational basis of Meropenem resistance in Pseudomonas aeruginosa
The carbapenem-resistant strains of Pseudomonas aeruginosa are considered as the dangerous pathogens of critical priority. Deciphering the mechanisms underlying the development of carbopenem resistance is an urgent challenge faced by modern medical science. The study was aimed to describe the diversity and fixation of mutations associated with the development of carbapenem resistance during the P. aeruginosa adaptation to the increasing meropenem concentrations. The objects of the study were P. aeruginosa isolates obtained by growing the ATCC 27853 P. aeruginosa reference strain exposed to increasing concentrations of meropenem. The isolates were tested for meropenem susceptibility using E-tests (Epsilometer tests) and by the agar dilution method. Genomes of the isolates were sequenced in the MGISEQ-2000 whole-genome sequencer. The findings show that in experimental settings P. aeruginosa develops high meropenem resistance very quickly (in 6 days). Evolution of resistance is associated with cloning involving the emergence of multiple clones with various genotypes. Mutagenesis that involves 11 genes, including oprD, pbuE, nalD, nalC, spoT, mlaA, mexD, mexR, oprM, mraY, pbp3, provides the basis for cloning. Regardless of the levels of their meropenem resistance, some of the emerging clones do not progressively develop and are replaced by more successful clones.</jats:p
- …
