230 research outputs found
Catalytic Conversion Probabilities for Bipartite Pure States
For two given bipartite-entangled pure states, an expression is obtained for
the least upper bound of conversion probabilities using catalysis. The
attainability of the upper bound can also be decided if that bound is less than
one.Comment: 4 pages; comments appreciated; the article is a modified version of
this preprint combined with arXiv:0707.044
Cellular automata on regular rooted trees
We study cellular automata on regular rooted trees. This includes the
characterization of sofic tree shifts in terms of unrestricted Rabin automata
and the decidability of the surjectivity problem for cellular automata between
sofic tree shifts
On almost randomizing channels with a short Kraus decomposition
For large d, we study quantum channels on C^d obtained by selecting randomly
N independent Kraus operators according to a probability measure mu on the
unitary group U(d). When mu is the Haar measure, we show that for
N>d/epsilon^2. For d=2^k (k qubits), this includes Kraus operators
obtained by tensoring k random Pauli matrices. The proof uses recent results on
empirical processes in Banach spaces.Comment: We added some background on geometry of Banach space
Hastings' additivity counterexample via Dvoretzky's theorem
The goal of this note is to show that Hastings' counterexample to the
additivity of minimal output von Neumann entropy can be readily deduced from a
sharp version of Dvoretzky's theorem on almost spherical sections of convex
bodies.Comment: 12 pages; v.2: added references, Appendix A expanded to make the
paper essentially self-containe
How often is a random quantum state k-entangled?
The set of trace preserving, positive maps acting on density matrices of size
d forms a convex body. We investigate its nested subsets consisting of
k-positive maps, where k=2,...,d. Working with the measure induced by the
Hilbert-Schmidt distance we derive asymptotically tight bounds for the volumes
of these sets. Our results strongly suggest that the inner set of
(k+1)-positive maps forms a small fraction of the outer set of k-positive maps.
These results are related to analogous bounds for the relative volume of the
sets of k-entangled states describing a bipartite d X d system.Comment: 19 pages in latex, 1 figure include
Decision with Bayesian network in the concurrent faults event
The purpose of this article is to present a new method for process diagnosis with Bayesian network. The interest of this method is to propose a new structure of Bayesian network allowing to diagnose a system with the model-based framework or with the data-driven framework. A particular interest of the proposed approach is the use of continuous nodes in the network in order to evaluate the status of the process. The effectiveness and performances of the method are illustrated on a heating water process corrupted by various faults
Non-additivity of Renyi entropy and Dvoretzky's Theorem
The goal of this note is to show that the analysis of the minimum output
p-Renyi entropy of a typical quantum channel essentially amounts to applying
Milman's version of Dvoretzky's Theorem about almost Euclidean sections of
high-dimensional convex bodies. This conceptually simplifies the
(nonconstructive) argument by Hayden-Winter disproving the additivity
conjecture for the minimal output p-Renyi entropy (for p>1).Comment: 8 pages, LaTeX; v2: added and updated references, minor editorial
changes, no content change
Using Bayesian networks for decision in the simultaneous faults case
The purpose of this article is to present a new method for process diagnosis with Bayesian network. The interest of this method is to propose a new structure of Bayesian network allowing to diagnose a system with the model-based framework or with the data-driven framework. A particular interest of the proposed approach is the use of continuous nodes in the network in order to evaluate the status of the process. The effectiveness and performances of the method are illustrated on a heating water process corrupted by various faults
Fracture properties characterization of nuclear fuel using micro-cantilever bending
International audienc
- …