For large d, we study quantum channels on C^d obtained by selecting randomly
N independent Kraus operators according to a probability measure mu on the
unitary group U(d). When mu is the Haar measure, we show that for
N>d/epsilon^2,suchachannelisepsilon−randomizingwithhighprobability,whichmeansthatitmapseverystatewithindistanceepsilon/d(inoperatornorm)ofthemaximallymixedstate.ThisslightlyimprovesonaresultbyHayden,Leung,ShorandWinterbyoptimizingtheirdiscretizationargument.Moreover,forgeneralmu,weobtainaepsilon−randomizingchannelprovidedN>d(logd)6/epsilon2. For d=2^k (k qubits), this includes Kraus operators
obtained by tensoring k random Pauli matrices. The proof uses recent results on
empirical processes in Banach spaces.Comment: We added some background on geometry of Banach space