1,408 research outputs found

    Inelastic J/ΨJ/\Psi Photoproduction off Nuclei: Gluon Enhancement or Double Color Exchange?

    Full text link
    The nuclear enhancement observed in inelastic photoproduction of J/ΨJ/\Psi should not be interpreted as evidence for an increased gluon density in nuclei. The nuclear suppression of the production rate due to initial and final state interactions is calculated and a novel two-step color exchange process is proposed, which is able to explain the data.Comment: Latex file, 23 pages including 5 Postscript figure

    关于《现代汉语词典》词汇计量研究的思考

    Get PDF
    A Dictionary of Modern Chinese is standardized dictionary of words in Chinese Putonghua. The establishment of a database of DMC for a quantitative study of its entries as a closed, exhaustive and specific body will change significantly the situation of lacking quantitative analysis in traditional lexical study, so that to help the systemization and accuracy of the study of Chinese lexicology and lexicography. This paper expounds the point of departure, ways and methodology and perspective in theory a..

    Light hadron, Charmonium(-like) and Bottomonium(-like) states

    Full text link
    Hadron physics represents the study of strongly interacting matter in all its manifestations and the understanding of its properties and interactions. The interest on this field has been revitalized by the discovery of new light hadrons, charmonium- and bottomonium-like states. I review the most recent experimental results from different experiments.Comment: Presented at Lepton-Photon 2011, Mumbai, India; 21 pages, 18 figures; add more references; some correctio

    Relativistic Hamiltonian Dynamics and Few-Nucleon Systems

    Get PDF
    We present a preliminary calculation of the electromagnetic form factors of 3^3He and 3^3H, performed within the Light-Front Hamiltonian Dynamics. Relativistic effects show their relevance even at the static limit, increasing at higher values of momentum transfer, as expected.Comment: 6 pages, 4 figures. Proceedings of 20th European Conference on Few-Body Problems in Physics; to be published in Few-Body System

    Controlling Cherenkov angles with resonance transition radiation

    Full text link
    Cherenkov radiation provides a valuable way to identify high energy particles in a wide momentum range, through the relation between the particle velocity and the Cherenkov angle. However, since the Cherenkov angle depends only on material's permittivity, the material unavoidably sets a fundamental limit to the momentum coverage and sensitivity of Cherenkov detectors. For example, Ring Imaging Cherenkov detectors must employ materials transparent to the frequency of interest as well as possessing permittivities close to unity to identify particles in the multi GeV range, and thus are often limited to large gas chambers. It would be extremely important albeit challenging to lift this fundamental limit and control Cherenkov angles as preferred. Here we propose a new mechanism that uses constructive interference of resonance transition radiation from photonic crystals to generate both forward and backward Cherenkov radiation. This mechanism can control Cherenkov angles in a flexible way with high sensitivity to any desired range of velocities. Photonic crystals thus overcome the severe material limit for Cherenkov detectors, enabling the use of transparent materials with arbitrary values of permittivity, and provide a promising option suited for identification of particles at high energy with enhanced sensitivity.Comment: There are 16 pages and 4 figures for the manuscript. Supplementary information with 18 pages and 5 figures, appended at the end of the file with the manuscript. Source files in Word format converted to PDF. Submitted to Nature Physic

    D-meson decay constants and a check of factorization in non-leptonic B-decays

    Get PDF
    We compute the vector meson decay constants fD*, fDs* from the simulation of twisted mass QCD on the lattice with Nf = 2 dynamical quarks. When combining their values with the pseudoscalar D(s)-meson decay constants, we were able (i) to show that the heavy quark spin symmetry breaking effects with the charm quark are large, fDs*/fDs = 1.26(3), and (ii) to check the factorization approximation in a few specific B-meson non-leptonic decay modes. Besides our main results, fD* = 278 \pm 13 \pm 10 MeV, and fDs* = 311 \pm 9 MeV, other phenomenologically interesting results of this paper are: fDs*/fD* = 1.16 \pm 0.02 \pm 0.06, fDs*/fD = 1.46 \pm 0.05 \pm 0.06, and fDs/fD* = 0.89 \pm 0.02 \pm 0.03. Finally, we correct the value for B(B0 \rightarrow D+ pi-) quoted by PDG, and find B(B0 \rightarrow D+ pi-) = (7.8 \pm 1.4) \times 10-7. Alternatively, by using the ratios discussed in this paper, we obtain B(B0 \rightarrow D+ pi-) = (8.3 \pm 1.0 \pm 0.8)\times10-7.Comment: 16 pages, 4 eps figure

    Two highly divergent alcohol dehydrogenases of melon exhibit fruit ripening-specific expression and distinct biochemical characteristics

    Get PDF
    Alcohol dehydrogenases (ADH) participate in the biosynthetic pathway of aroma volatiles in fruit by interconverting aldehydes to alcohols and providing substrates for the formation of esters. Two highly divergent ADH genes (15% identity at the amino acid level) of Cantaloupe Charentais melon (Cucumis melo var. Cantalupensis) have been isolated. Cm-ADH1 belongs to the medium-chain zinc-binding type of ADHs and is highly similar to all ADH genes expressed in fruit isolated so far. Cm-ADH2 belongs to the short-chain type of ADHs. The two encoded proteins are enzymatically active upon expression in yeast. Cm-ADH1 has strong preference for NAPDH as a co-factor, whereas Cm-ADH2 preferentially uses NADH. Both Cm-ADH proteins are much more active as reductases with Kms 10–20 times lower for the conversion of aldehydes to alcohols than for the dehydrogenation of alcohols to aldehydes. They both show strong preference for aliphatic aldehydes but Cm-ADH1 is capable of reducing branched aldehydes such as 3-methylbutyraldehyde, whereas Cm-ADH2 cannot. Both Cm-ADH genes are expressed specifically in fruit and up-regulated during ripening. Gene expression as well as total ADH activity are strongly inhibited in antisense ACC oxidase melons and in melon fruit treated with the ethylene antagonist 1-methylcyclopropene (1-MCP), indicating a positive regulation by ethylene. These data suggest that each of the Cm-ADH protein plays a specific role in the regulation of aroma biosynthesis in melon fruit

    Background Light in Potential Sites for the ANTARES Undersea Neutrino Telescope

    Get PDF
    The ANTARES collaboration has performed a series of {\em in situ} measurements to study the background light for a planned undersea neutrino telescope. Such background can be caused by 40^{40}K decays or by biological activity. We report on measurements at two sites in the Mediterranean Sea at depths of 2400~m and 2700~m, respectively. Three photomultiplier tubes were used to measure single counting rates and coincidence rates for pairs of tubes at various distances. The background rate is seen to consist of three components: a constant rate due to 40^{40}K decays, a continuum rate that varies on a time scale of several hours simultaneously over distances up to at least 40~m, and random bursts a few seconds long that are only correlated in time over distances of the order of a meter. A trigger requiring coincidences between nearby photomultiplier tubes should reduce the trigger rate for a neutrino telescope to a manageable level with only a small loss in efficiency.Comment: 18 pages, 8 figures, accepted for publication in Astroparticle Physic

    Validation of differential gene expression algorithms: Application comparing fold-change estimation to hypothesis testing

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Sustained research on the problem of determining which genes are differentially expressed on the basis of microarray data has yielded a plethora of statistical algorithms, each justified by theory, simulation, or ad hoc validation and yet differing in practical results from equally justified algorithms. Recently, a concordance method that measures agreement among gene lists have been introduced to assess various aspects of differential gene expression detection. This method has the advantage of basing its assessment solely on the results of real data analyses, but as it requires examining gene lists of given sizes, it may be unstable.</p> <p>Results</p> <p>Two methodologies for assessing predictive error are described: a cross-validation method and a posterior predictive method. As a nonparametric method of estimating prediction error from observed expression levels, cross validation provides an empirical approach to assessing algorithms for detecting differential gene expression that is fully justified for large numbers of biological replicates. Because it leverages the knowledge that only a small portion of genes are differentially expressed, the posterior predictive method is expected to provide more reliable estimates of algorithm performance, allaying concerns about limited biological replication. In practice, the posterior predictive method can assess when its approximations are valid and when they are inaccurate. Under conditions in which its approximations are valid, it corroborates the results of cross validation. Both comparison methodologies are applicable to both single-channel and dual-channel microarrays. For the data sets considered, estimating prediction error by cross validation demonstrates that empirical Bayes methods based on hierarchical models tend to outperform algorithms based on selecting genes by their fold changes or by non-hierarchical model-selection criteria. (The latter two approaches have comparable performance.) The posterior predictive assessment corroborates these findings.</p> <p>Conclusions</p> <p>Algorithms for detecting differential gene expression may be compared by estimating each algorithm's error in predicting expression ratios, whether such ratios are defined across microarray channels or between two independent groups.</p> <p>According to two distinct estimators of prediction error, algorithms using hierarchical models outperform the other algorithms of the study. The fact that fold-change shrinkage performed as well as conventional model selection criteria calls for investigating algorithms that combine the strengths of significance testing and fold-change estimation.</p

    Successful Targeting and Disruption of an Integrated Reporter Lentivirus Using the Engineered Homing Endonuclease Y2 I-AniI

    Get PDF
    Current antiviral therapy does not cure HIV-infected individuals because the virus establishes lifelong latent infection within long-lived memory T cells as integrated HIV proviral DNA. Here, we report a new therapeutic approach that aims to cure cells of latent HIV infection by rendering latent virus incapable of replication and pathogenesis via targeted cellular mutagenesis of essential viral genes. This is achieved by using a homing endonuclease to introduce DNA double-stranded breaks (dsb) within the integrated proviral DNA, which is followed by triggering of the cellular DNA damage response and error-prone repair. To evaluate this concept, we developed an in vitro culture model of viral latency, consisting of an integrated lentiviral vector with an easily evaluated reporter system to detect targeted mutagenesis events. Using this system, we demonstrate that homing endonucleases can efficiently and selectively target an integrated reporter lentivirus within the cellular genome, leading to mutation in the proviral DNA and loss of reporter gene expression. This new technology offers the possibility of selectively disabling integrated HIV provirus within latently infected cells
    corecore