59 research outputs found

    Non-perturbative Propagators, Running Coupling and Dynamical Quark Mass of Landau gauge QCD

    Get PDF
    The coupled system of renormalized Dyson-Schwinger equations for the quark, gluon and ghost propagators of Landau gauge QCD is solved within truncation schemes. These employ bare as well as non-perturbative ansaetze for the vertices such that the running coupling as well as the quark mass function are independent of the renormalization point. The one-loop anomalous dimensions of all propagators are reproduced. Dynamical chiral symmetry breaking is found, the dynamically generated quark mass agrees well with phenomenological values and corresponding results from lattice calculations. The effects of unquenching the system are small. In particular the infrared behavior of the ghost and gluon dressing functions found in previous studies is almost unchanged as long as the number of light flavors is smaller than four.Comment: 34 pages, 10 figures, version to be published by Phys. Rev.

    Analytic properties of the Landau gauge gluon and quark propagators

    Full text link
    We explore the analytic structure of the gluon and quark propagators of Landau gauge QCD from numerical solutions of the coupled system of renormalized Dyson--Schwinger equations and from fits to lattice data. We find sizable negative norm contributions in the transverse gluon propagator indicating the absence of the transverse gluon from the physical spectrum. A simple analytic structure for the gluon propagator is proposed. For the quark propagator we find evidence for a mass-like singularity on the real timelike momentum axis, with a mass of 350 to 500 MeV. Within the employed Green's functions approach we identify a crucial term in the quark-gluon vertex that leads to a positive definite Schwinger function for the quark propagator.Comment: 42 pages, 16 figures, revtex; version to be published in Phys Rev

    What Drives Fitness Apps Usage? An Empirical Evaluation

    Get PDF
    Part 3: Creating Value through ApplicationsInternational audienceThe increased health problems associated with lack of physical activity is of great concern around the world. Mobile phone based fitness applications appear to be a cost effective promising solution for this problem. The aim of this study is to develop a research model that can broaden understanding of the factors that influence the user acceptance of mobile fitness apps. Drawing from Unified Theory of Acceptance and Use of Technology (UTAUT) and Elaboration Likelihood Model (ELM), we conceptualize the antecedents and moderating factors of fitness app use. We validate our model using field survey. Implications for research and practice are discussed

    Study of Z → llγ decays at √s = 8 TeV with the ATLAS detector

    Get PDF
    This paper presents a study of Z → llγ decays with the ATLAS detector at the Large Hadron Collider. The analysis uses a proton–proton data sample corresponding to an integrated luminosity of 20.2 fb−1 collected at a centre-ofmass energy √s = 8 TeV. Integrated fiducial cross-sections together with normalised differential fiducial cross-sections, sensitive to the kinematics of final-state QED radiation, are obtained. The results are found to be in agreement with stateof-the-art predictions for final-state QED radiation. First measurements of Z → llγ γ decays are also reported

    Constraints on spin-0 dark matter mediators and invisible Higgs decays using ATLAS 13 TeV pp collision data with two top quarks and missing transverse momentum in the final state

    Get PDF
    This paper presents a statistical combination of searches targeting final states with two top quarks and invisible particles, characterised by the presence of zero, one or two leptons, at least one jet originating from a b-quark and missing transverse momentum. The analyses are searches for phenomena beyond the Standard Model consistent with the direct production of dark matter in pp collisions at the LHC, using 139 fb−1 of data collected with the ATLAS detector at a centre-of-mass energy of 13 TeV. The results are interpreted in terms of simplified dark matter models with a spin-0 scalar or pseudoscalar mediator particle. In addition, the results are interpreted in terms of upper limits on the Higgs boson invisible branching ratio, where the Higgs boson is produced according to the Standard Model in association with a pair of top quarks. For scalar (pseudoscalar) dark matter models, with all couplings set to unity, the statistical combination extends the mass range excluded by the best of the individual channels by 50 (25) GeV, excluding mediator masses up to 370 GeV. In addition, the statistical combination improves the expected coupling exclusion reach by 14% (24%), assuming a scalar (pseudoscalar) mediator mass of 10 GeV. An upper limit on the Higgs boson invisible branching ratio of 0.38 (0.30+0.13−0.09) is observed (expected) at 95% confidence level

    Search for heavy Majorana or Dirac neutrinos and right-handed W gauge bosons in final states with charged leptons and jets in pp collisions at √s = 13 TeV with the ATLAS detector

    Get PDF
    A search for heavy right-handed Majorana or Dirac neutrinos NR and heavy right-handed gauge bosons WR is performed in events with energetic electrons or muons, with the same or opposite electric charge, and energetic jets. The search is carried out separately for topologies of clearly separated final-state products (“resolved” channel) and topologies with boosted final states with hadronic and/or leptonic products partially overlapping and reconstructed as a large-radius jet (“boosted” channel). The events are selected from pp collision data at the LHC with an integrated luminosity of 139 fb−1 collected by the ATLAS detector at √s = 13 TeV. No significant deviations from the Standard Model predictions are observed. The results are interpreted within the theoretical framework of a left-right symmetric model, and lower limits are set on masses in the heavy righthanded WR boson and NR plane. The excluded region extends to about m(WR) = 6.4 TeV for both Majorana and Dirac NR neutrinos at m(NR) < 1 TeV. NR with masses of less than 3.5 (3.6) TeV are excluded in the electron (muon) channel at m(WR) = 4.8 TeV for the Majorana neutrinos, and limits of m(NR) up to 3.6 TeV for m(WR) = 5.2 (5.0) TeV in the electron (muon) channel are set for the Dirac neutrinos. These constitute the most stringent exclusion limits to date for the model considered

    Search for doubly charged Higgs boson production in multi-lepton final states using 139 fb−1 of proton–proton collisions at s√ = 13 TeV with the ATLAS detector

    Get PDF
    A search for pair production of doubly charged Higgs bosons (H±± ), each decaying into a pair of prompt, isolated, and highly energetic leptons with the same electric charge, is presented. The search uses a proton–proton collision data sample at a centre-of-mass energy of 13 TeV corresponding to an integrated luminosity of 139 fb−1 recorded by the ATLAS detector during Run 2 of the Large Hadron Collider (LHC). This analysis focuses on same-charge leptonic decays, H±±→ℓ±ℓ′± where ℓ,ℓ′=e,μ,τ, in two-, three-, and four-lepton channels, but only considers final states which include electrons or muons. No evidence of a signal is observed. Corresponding upper limits on the production cross-section of a doubly charged Higgs boson are derived, as a function of its mass m(H±±), at 95% confidence level. Assuming that the branching ratios to each of the possible leptonic final states are equal, B(H±±→e±e±)=B(H±±→e±μ±)=B(H±±→μ±μ±)=B(H±±→e±τ±)=B(H±±→μ±τ±)=B(H±±→τ±τ±)=1/6, the observed (expected) lower limit on the mass of a doubly charged Higgs boson is 1080 GeV (1065 GeV) within the left-right symmetric type-II seesaw model, which is the strongest limit to date produced by the ATLAS Collaboration. Additionally, this paper provides the first direct test of the Zee–Babu neutrino mass model at the LHC, yielding an observed (expected) lower limit of m(H±±) = 900 GeV (880 GeV)

    Software performance of the ATLAS track reconstruction for LHC run 3

    Get PDF
    Charged particle reconstruction in the presence of many simultaneous proton–proton (pp) collisions in the LHC is a challenging task for the ATLAS experiment’s reconstruction software due to the combinatorial complexity. This paper describes the major changes made to adapt the software to reconstruct high-activity collisions with an average of 50 or more simultaneous pp interactions per bunch crossing (pileup) promptly using the available computing resources. The performance of the key components of the track reconstruction chain and its dependence on pile-up are evaluated, and the improvement achieved compared to the previous software version is quantified. For events with an average of 60 pp collisions per bunch crossing, the updated track reconstruction is twice as fast as the previous version, without significant reduction in reconstruction efficiency and while reducing the rate of combinatorial fake tracks by more than a factor two
    corecore