508 research outputs found

    Non-linear Simulations of MHD Instabilities in Tokamaks Including Eddy Current Effects and Perspectives for the Extension to Halo Currents

    Full text link
    The dynamics of large scale plasma instabilities can strongly be influenced by the mutual interaction with currents flowing in conducting vessel structures. Especially eddy currents caused by time-varying magnetic perturbations and halo currents flowing directly from the plasma into the walls are important. The relevance of a resistive wall model is directly evident for Resistive Wall Modes (RWMs) or Vertical Displacement Events (VDEs). However, also the linear and non-linear properties of most other large-scale instabilities may be influenced significantly by the interaction with currents in conducting structures near the plasma. The understanding of halo currents arising during disruptions and VDEs, which are a serious concern for ITER as they may lead to strong asymmetric forces on vessel structures, could also benefit strongly from these non-linear modeling capabilities. Modeling the plasma dynamics and its interaction with wall currents requires solving the magneto-hydrodynamic (MHD) equations in realistic toroidal X-point geometry consistently coupled with a model for the vacuum region and the resistive conducting structures. With this in mind, the non-linear finite element MHD code JOREK has been coupled with the resistive wall code STARWALL, which allows to include the effects of eddy currents in 3D conducting structures in non-linear MHD simulations. This article summarizes the capabilities of the coupled JOREK-STARWALL system and presents benchmark results as well as first applications to non-linear simulations of RWMs, VDEs, disruptions triggered by massive gas injection, and Quiescent H-Mode. As an outlook, the perspectives for extending the model to halo currents are described.Comment: Proceeding paper for Theory of Fusion Plasmas (Joint Varenna-Lausanne International Workshop), Varenna, Italy (September 1-5, 2014); accepted for publication in: to Journal of Physics: Conference Serie

    Etude expƩrimentale de la maladie de Teschen Isolement et identification de deux souches de virus en France

    Get PDF
    Confirmant les suspicions antĆ©rieurement Ć©mises, les auteurs ont isolĆ© pour la premiĆØre fois en France (1968-1970) deux souches de virus de la maladie de Teschen. Cet isolement a Ć©tĆ© possible seulement en culture cellulaire Ć  partir du 4e passage aveugle sur deux types de cellules de rein de porc (culture primaire et lignĆ©e cellulaire). Lā€™identification a Ć©tĆ© effectuĆ©e par coloration, sĆ©ro neutralisation sur cultures cellulaires, immunofluorescence, inoculation et reproduction de la maladie chez les animaux avec mise en Ć©vidence de lĆ©sions dā€™encĆ©phalomyĆ©lite et, plus spĆ©cialement, de poliomyĆ©lite

    RĆ©apparition de la rage en France. Premier cas chez un renard dans la Moselle

    Get PDF
    RĆ©apparition de la rage en France : 1er cas chez un renard dans la Moselle. P. Atanasiu, A. Gamet, P. Graviere, M. Le Guilloux, J. C. Guillon et A. VallĆ©e (avec lā€™assistance technique de R. Lavault et A. Saorine). Un cas de rage vient dā€™ĆŖtre diagnostiquĆ© chez un renard, dans la Moselle. La rĆ©apparition de cette virĆ³se en France nous fait une obligation de prendre des mesures sanitaires trĆØs Ć©nergiques

    The structure of Herpesvirus Fusion Glycoprotein B-Bilayer Complex reveals the protein-membrane and lateral protein-protein interaction

    Get PDF
    Glycoprotein B (gB) is a key component of the complex herpesvirus fusion machinery. We studied membrane interaction of two gB ectodomain forms and present an electron cryotomography structure of the gB-bilayer complex. The two forms differed in presence or absence of the membrane proximal region (MPR) but showed an overall similar trimeric shape. The presence of the MPR impeded interaction with liposomes. In contrast, the MPR-lacking form interacted efficiently with liposomes. Lateral interaction resulted in coat formation on the membranes. The structure revealed that interaction of gB with membranes was mediated by the fusion loops and limited to the outer membrane leaflet. The observed intrinsic propensity of gB to cluster on membranes indicates an additional role of gB in driving the fusion process forward beyond the transient fusion pore opening and subsequently leading to fusion pore expansion

    Structural characteristics and antiviral activity of multiple peptides derived from MDV glycoproteins B and H

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Marek's disease virus (MDV), which is widely considered to be a natural model of virus-induced lymphoma, has the potential to cause tremendous losses in the poultry industry. To investigate the structural basis of MDV membrane fusion and to identify new viral targets for inhibition, we examined the domains of the MDV glycoproteins gH and gB.</p> <p>Results</p> <p>Four peptides derived from the MDV glycoprotein gH (gHH1, gHH2, gHH3, and gHH5) and one peptide derived from gB (gBH1) could efficiently inhibit plaque formation in primary chicken embryo fibroblast cells (CEFs) with 50% inhibitory concentrations (IC<sub>50</sub>) of below 12 Ī¼M. These peptides were also significantly able to reduce lesion formation on chorioallantoic membranes (CAMs) of infected chicken embryos at a concentration of 0.5 mM in 60 Ī¼l of solution. The HR2 peptide from Newcastle disease virus (NDVHR2) exerted effects on MDV specifically at the stage of virus entry (i.e., in a cell pre-treatment assay and an embryo co-treatment assay), suggesting cross-inhibitory effects of NDV HR2 on MDV infection. None of the peptides exhibited cytotoxic effects at the concentrations tested. Structural characteristics of the five peptides were examined further.</p> <p>Conclusions</p> <p>The five MDV-derived peptides demonstrated potent antiviral activity, not only in plaque formation assays in vitro, but also in lesion formation assays in vivo. The present study examining the antiviral activity of these MDV peptides, which are useful as small-molecule antiviral inhibitors, provides information about the MDV entry mechanism.</p

    The structure of the KlcA and ArdB proteins reveals a novel fold and antirestriction activity against Type I DNA restriction systems in vivo but not in vitro

    Get PDF
    Plasmids, conjugative transposons and phage frequently encode anti-restriction proteins to enhance their chances of entering a new bacterial host that is highly likely to contain a Type I DNA restriction and modification (RM) system. The RM system usually destroys the invading DNA. Some of the anti-restriction proteins are DNA mimics and bind to the RM enzyme to prevent it binding to DNA. In this article, we characterize ArdB anti-restriction proteins and their close homologues, the KlcA proteins from a range of mobile genetic elements; including an ArdB encoded on a pathogenicity island from uropathogenic Escherichia coli and a KlcA from an IncP-1b plasmid, pBP136 isolated from Bordetella pertussis. We show that all the ArdB and KlcA act as anti-restriction proteins and inhibit the four main families of Type I RM systems in vivo, but fail to block the restriction endonuclease activity of the archetypal Type I RM enzyme, EcoKI, in vitro indicating that the action of ArdB is indirect and very different from that of the DNA mimics. We also present the structure determined by NMR spectroscopy of the pBP136 KlcA protein. The structure shows a novel protein fold and it is clearly not a DNA structural mimic

    Structure of Herpes Simplex Virus Glycoprotein D Bound to the Human Receptor Nectin-1

    Get PDF
    Binding of herpes simplex virus (HSV) glycoprotein D (gD) to a cell surface receptor is required to trigger membrane fusion during entry into host cells. Nectin-1 is a cell adhesion molecule and the main HSV receptor in neurons and epithelial cells. We report the structure of gD bound to nectin-1 determined by x-ray crystallography to 4.0 ƅ resolution. The structure reveals that the nectin-1 binding site on gD differs from the binding site of the HVEM receptor. A surface on the first Ig-domain of nectin-1, which mediates homophilic interactions of Ig-like cell adhesion molecules, buries an area composed by residues from both the gD N- and C-terminal extensions. Phenylalanine 129, at the tip of the loop connecting Ī²-strands F and G of nectin-1, protrudes into a groove on gD, which is otherwise occupied by C-terminal residues in the unliganded gD and by N-terminal residues in the gD/HVEM complex. Notably, mutation of Phe129 to alanine prevents nectin-1 binding to gD and HSV entry. Together these data are consistent with previous studies showing that gD disrupts the normal nectin-1 homophilic interactions. Furthermore, the structure of the complex supports a model in which gD-receptor binding triggers HSV entry through receptor-mediated displacement of the gD C-terminal region
    • ā€¦
    corecore