17 research outputs found

    Diversity of isoprene-degrading bacteria in phyllosphere and soil communities from a high isoprene-emitting environment: a Malaysian oil palm plantation

    Get PDF
    Background: Isoprene is the most abundantly produced biogenic volatile organic compound (BVOC) on Earth, with annual global emissions almost equal to those of methane. Despite its importance in atmospheric chemistry and climate, little is known about the biological degradation of isoprene in the environment. The largest source of isoprene is terrestrial plants, and oil palms, the cultivation of which is expanding rapidly, are among the highest isoprene-producing trees. Results: DNA stable isotope probing (DNA-SIP) to study the microbial isoprene-degrading community associated with oil palm trees revealed novel genera of isoprene-utilising bacteria including Novosphingobium, Pelomonas, Rhodoblastus, Sphingomonas and Zoogloea in both oil palm soils and on leaves. Amplicon sequencing of isoA genes, which encode the α-subunit of the isoprene monooxygenase (IsoMO), a key enzyme in isoprene metabolism, confirmed that oil palm trees harbour a novel diversity of isoA sequences. In addition, metagenome assembled genomes (MAGs) were reconstructed from oil palm soil and leaf metagenomes and putative isoprene degradation genes were identified. Analysis of unenriched metagenomes showed that isoA-containing bacteria are more abundant in soils than in the oil palm phyllosphere. Conclusion: This study greatly expands the known diversity of bacteria that can metabolise isoprene and contributes to a better understanding of the biological degradation of this important but neglected climate-active gas

    Gene probing reveals the widespread distribution, diversity and abundance of isoprene-degrading bacteria in the environment

    Get PDF
    Background: Approximately 500 Tg of isoprene are emitted to the atmosphere annually, an amount similar to that of methane, and despite its significant effects on the climate, very little is known about the biological degradation of isoprene in the environment. Isolation and characterisation of isoprene degraders at the molecular level has allowed the development of probes targeting isoA encoding the α-subunit of the isoprene monooxygenase. This enzyme belongs to the soluble diiron centre monooxygenase family and catalyses the first step in the isoprene degradation pathway. The use of probes targeting key metabolic genes is a successful approach in molecular ecology to study specific groups of bacteria in complex environments. Here, we developed and tested a novel isoA PCR primer set to study the distribution, abundance, and diversity of isoprene degraders in a wide range of environments. Results: The new isoA probes specifically amplified isoA genes from taxonomically diverse isoprene-degrading bacteria including members of the genera Rhodococcus, Variovorax, and Sphingopyxis. There was no cross-reactivity with genes encoding related oxygenases from non-isoprene degraders. Sequencing of isoA amplicons from DNA extracted from environmental samples enriched with isoprene revealed that most environments tested harboured a considerable variety of isoA sequences, with poplar leaf enrichments containing more phylogenetically diverse isoA genes. Quantification by qPCR using these isoA probes revealed that isoprene degraders are widespread in the phyllosphere, terrestrial, freshwater and marine environments. Specifically, soils in the vicinity of high isoprene-emitting trees contained the highest number of isoprene-degrading bacteria. Conclusion: This study provides the molecular ecology tools to broaden our knowledge of the distribution, abundance and diversity of isoprene degraders in the environment, which is a fundamental step necessary to assess the impact that microbes have in mitigating the effects of this important climate-active gas

    Clinical trials in pediatric ALS: a TRICALS feasibility study.

    Get PDF
    Background: Pediatric investigation plans (PIPs) describe how adult drugs can be studied in children. In 2015, PIPs for Amyotrophic Lateral Sclerosis (ALS) became mandatory for European marketing-authorization of adult treatments, unless a waiver is granted by the European Medicines Agency (EMA).Objective: To assess the feasibility of clinical studies on the effect of therapy in children (<18 years) with ALS in Europe.Methods: The EMA database was searched for submitted PIPs in ALS. A questionnaire was sent to 58 European ALS centers to collect the prevalence of pediatric ALS during the past ten years, the recruitment potential for future pediatric trials, and opinions of ALS experts concerning a waiver for ALS.Results: Four PIPs were identified; two were waived and two are planned for the future. In total, 49 (84.5%) centers responded to the questionnaire. The diagnosis of 44,858 patients with ALS was reported by 46 sites; 39 of the patients had an onset < 18 years (prevalence of 0.008 cases per 100,000 or 0.087% of all diagnosed patients). The estimated recruitment potential (47 sites) was 26 pediatric patients within five years. A majority of ALS experts (75.5%) recommend a waiver should apply for ALS due to the low prevalence of pediatric ALS.Conclusions: ALS with an onset before 18 years is extremely rare and may be a distinct entity from adult ALS. Conducting studies on the effect of disease-modifying therapy in pediatric ALS may involve lengthy recruitment periods, high costs, ethical/legal implications, challenges in trial design and limited information

    Microbial cycling of isoprene, the most abundantly produced biological volatile organic compound on Earth

    Get PDF
    Isoprene (2-methyl-1,3-butadiene), the most abundantly produced biogenic volatile organic compound (BVOC) on Earth, is highly reactive and can have diverse and often detrimental atmospheric effects, which impact on climate and health. Most isoprene is produced by terrestrial plants, but (micro)algal production is important in aquatic environments, and the relative bacterial contribution remains unknown. Soils are a sink for isoprene, and bacteria that can use isoprene as a carbon and energy source have been cultivated and also identified using cultivation-independent methods from soils, leaves and coastal/marine environments. Bacteria belonging to the Actinobacteria are most frequently isolated and identified, and Proteobacteria have also been shown to degrade isoprene. In the freshwater-sediment isolate, Rhodococcus strain AD45, initial oxidation of isoprene to 1,2-epoxy-isoprene is catalyzed by a multicomponent isoprene monooxygenase encoded by the genes isoABCDEF. The resultant epoxide is converted to a glutathione conjugate by a glutathione S-transferase encoded by isoI, and further degraded by enzymes encoded by isoGHJ. Genome sequence analysis of actinobacterial isolates belonging to the genera Rhodococcus, Mycobacterium and Gordonia has revealed that isoABCDEF and isoGHIJ are linked in an operon, either on a plasmid or the chromosome. In Rhodococcus strain AD45 both isoprene and epoxy-isoprene induce a high level of transcription of 22 contiguous genes, including isoABCDEF and isoGHIJ. Sequence analysis of the isoA gene, encoding the large subunit of the oxygenase component of isoprene monooxygenase, from isolates has facilitated the development of PCR primers that are proving valuable in investigating the ecology of uncultivated isoprene-degrading bacteria

    Benign external hydrocephalus: a review, with emphasis on management

    Get PDF
    Benign external hydrocephalus in infants, characterized by macrocephaly and typical neuroimaging findings, is considered as a self-limiting condition and is therefore rarely treated. This review concerns all aspects of this condition: etiology, neuroimaging, symptoms and clinical findings, treatment, and outcome, with emphasis on management. The review is based on a systematic search in the Pubmed and Web of Science databases. The search covered various forms of hydrocephalus, extracerebral fluid, and macrocephaly. Studies reporting small children with idiopathic external hydrocephalus were included, mostly focusing on the studies reporting a long-term outcome. A total of 147 studies are included, the majority however with a limited methodological quality. Several theories regarding pathophysiology and various symptoms, signs, and clinical findings underscore the heterogeneity of the condition. Neuroimaging is important in the differentiation between external hydrocephalus and similar conditions. A transient delay of psychomotor development is commonly seen during childhood. A long-term outcome is scarcely reported, and the results are varying. Although most children with external hydrocephalus seem to do well both initially and in the long term, a substantial number of patients show temporary or permanent psychomotor delay. To verify that this truly is a benign condition, we suggest that future research on external hydrocephalus should focus on the long-term effects of surgical treatment as opposed to conservative management

    Genetics and Ecology of Isoprene Degradation

    No full text
    Approximately 550 million tonnes of the monoterpene, isoprene, are emitted to the atmosphere annually, principally from terrestrial plants. In contrast to methane, which is emitted in similar quantities, little is known about the biodegradation of isoprene. However, 30 years ago, bacteria capable of living on isoprene as a sole source of carbon and energy were described, although they were not investigated in detail. Recently there has been renewed interest in the potential of bacteria living in soils, marine sediments, and on the leaves of plants to degrade isoprene. Isolates capable of isoprene metabolism use a multicomponent soluble monooxygenase, which contains a diiron center at the active site, to oxidize isoprene to the epoxide, and all isolates described to date depend on glutathione for subsequent metabolic steps. The diversity of isoprene degraders has been investigated in terrestrial and marine environments using DNA-stable isotope probingStable isotope probing(DNA-SIP), together with the use of gene probes targeting the monooxygenase active-site subunit. Gaps in our knowledge and future research directions are described
    corecore