31 research outputs found

    Quivers from Matrix Factorizations

    Full text link
    We discuss how matrix factorizations offer a practical method of computing the quiver and associated superpotential for a hypersurface singularity. This method also yields explicit geometrical interpretations of D-branes (i.e., quiver representations) on a resolution given in terms of Grassmannians. As an example we analyze some non-toric singularities which are resolved by a single CP1 but have "length" greater than one. These examples have a much richer structure than conifolds. A picture is proposed that relates matrix factorizations in Landau-Ginzburg theories to the way that matrix factorizations are used in this paper to perform noncommutative resolutions.Comment: 33 pages, (minor changes

    New Form of the T-Duality Due to the Stability of a Compact Dimension

    Full text link
    We study behaviors of a compact dimension and the TT-duality, in the presence of the wrapped closed bosonic strings. When the closed strings interact and form another system of strings, the radius of compactification increases. This modifies the TT-duality, which we call it as TT-duality-like. Some effects of the TT-duality-like will be studied.Comment: 12 pages, Latex, no figur

    Evidence for Heterotic/Heterotic Duality

    Get PDF
    We re-examine the question of heterotic - heterotic string duality in six dimensions and argue that the E8Ă—E8E_8\times E_8 heterotic string, compactified on K3K3 with equal instanton numbers in the two E8E_8's, has a self-duality that inverts the coupling, dualizes the antisymmetric tensor, acts non-trivially on the hypermultiplets, and exchanges gauge fields that can be seen in perturbation theory with gauge fields of a non-perturbative origin. The special role of the symmetric embedding of the anomaly in the two E8E_8's can be seen from field theory considerations or from an eleven-dimensional point of view. The duality can be deduced by looking in two different ways at eleven-dimensional MM-theory compactified on K3Ă—S1/Z2K3\times {\bf S}^1/\Z_2.Comment: 36 pages, LaTe

    Four Dimensional String/String/String Triality

    Get PDF
    In six spacetime dimensions, the heterotic string is dual to a Type IIAIIA string. On further toroidal compactification to four spacetime dimensions, the heterotic string acquires an SL(2,\BbbZ)_S strong/weak coupling duality and an SL(2,\BbbZ)_T \times SL(2,\BbbZ)_U target space duality acting on the dilaton/axion, complex Kahler form and the complex structure fields S,T,US,T,U respectively. Strong/weak duality in D=6D=6 interchanges the roles of SS and TT in D=4D=4 yielding a Type IIAIIA string with fields T,S,UT,S,U. This suggests the existence of a third string (whose six-dimensional interpretation is more obscure) that interchanges the roles of SS and UU. It corresponds in fact to a Type IIBIIB string with fields U,T,SU,T,S leading to a four-dimensional string/string/string triality. Since SL(2,\BbbZ)_S is perturbative for the Type IIBIIB string, this D=4D=4 triality implies SS-duality for the heterotic string and thus fills a gap left by D=6D=6 duality. For all three strings the total symmetry is SL(2,\BbbZ)_S \times O(6,22;\BbbZ)_{TU}. The O(6,22;\BbbZ) is {\it perturbative} for the heterotic string but contains the conjectured {\it non-perturbative} SL(2,\BbbZ)_X, where XX is the complex scalar of the D=10D=10 Type IIBIIB string. Thus four-dimensional triality also provides a (post-compactification) justification for this conjecture. We interpret the N=4N=4 Bogomol'nyi spectrum from all three points of view. In particular we generalize the Sen-Schwarz formula for short multiplets to include intermediate multiplets also and discuss the corresponding black hole spectrum both for the N=4N=4 theory and for a truncated SS--TT--UU symmetric N=2N=2 theory. Just as the first two strings are described by the four-dimensional {\it elementary} and {\it dual solitonic} solutions, so theComment: 36 pages, Latex, 2 figures, some references changed, minor changes in formulas and tables; to appear in Nucl. Phys.

    Introduction to M Theory and AdS/CFT Duality

    Get PDF
    An introductory survey of some of the developments that have taken place in superstring theory in the past few years is presented. The main focus is on three particular dualities. The first one is the appearance of an 11th dimension in the strong coupling limit of the type IIA theory, which give rise to M theory. The second one is the duality between the type IIB theory compactified on a circle and M theory on a two-torus. The final topic is an introduction to the recently proposed duality between superstring theory or M theory on certain anti de Sitter space backgrounds and conformally invariant quantum field theories.Comment: 26 pages; To be published in the Proceedings of a conference held in Corfu, Greece in September 1998. v2: reference adde

    The local Gromov-Witten theory of CP^1 and integrable hierarchies

    Full text link
    In this paper we begin the study of the relationship between the local Gromov-Witten theory of Calabi-Yau rank two bundles over the projective line and the theory of integrable hierarchies. We first of all construct explicitly, in a large number of cases, the Hamiltonian dispersionless hierarchies that govern the full descendent genus zero theory. Our main tool is the application of Dubrovin's formalism, based on associativity equations, to the known results on the genus zero theory from local mirror symmetry and localization. The hierarchies we find are apparently new, with the exception of the resolved conifold O(-1) + O(-1) -> P1 in the equivariantly Calabi-Yau case. For this example the relevant dispersionless system turns out to be related to the long-wave limit of the Ablowitz-Ladik lattice. This identification provides us with a complete procedure to reconstruct the dispersive hierarchy which should conjecturally be related to the higher genus theory of the resolved conifold. We give a complete proof of this conjecture for genus g<=1; our methods are based on establishing, analogously to the case of KdV, a "quasi-triviality" property for the Ablowitz-Ladik hierarchy at the leading order of the dispersive expansion. We furthermore provide compelling evidence in favour of the resolved conifold/Ablowitz-Ladik correspondence at higher genus by testing it successfully in the primary sector for g=2.Comment: 30 pages; v2: an issue involving constant maps contributions is pointed out in Sec. 3.3-3.4 and is now taken into account in the proofs of Thm 1.3-1.4, whose statements are unchanged. Several typos, formulae, notational inconsistencies have been fixed. v3: typos fixed, minor textual changes, version to appear on Comm. Math. Phy

    Topological String Amplitudes, Complete Intersection Calabi-Yau Spaces and Threshold Corrections

    Full text link
    We present the most complete list of mirror pairs of Calabi-Yau complete intersections in toric ambient varieties and develop the methods to solve the topological string and to calculate higher genus amplitudes on these compact Calabi-Yau spaces. These symplectic invariants are used to remove redundancies in examples. The construction of the B-model propagators leads to compatibility conditions, which constrain multi-parameter mirror maps. For K3 fibered Calabi-Yau spaces without reducible fibers we find closed formulas for all genus contributions in the fiber direction from the geometry of the fibration. If the heterotic dual to this geometry is known, the higher genus invariants can be identified with the degeneracies of BPS states contributing to gravitational threshold corrections and all genus checks on string duality in the perturbative regime are accomplished. We find, however, that the BPS degeneracies do not uniquely fix the non-perturbative completion of the heterotic string. For these geometries we can write the topological partition function in terms of the Donaldson-Thomas invariants and we perform a non-trivial check of S-duality in topological strings. We further investigate transitions via collapsing D5 del Pezzo surfaces and the occurrence of free Z2 quotients that lead to a new class of heterotic duals.Comment: 117 pages, 1 Postscript figur

    Logarithmic Corrections to Rotating Extremal Black Hole Entropy in Four and Five Dimensions

    Full text link
    We compute logarithmic corrections to the entropy of rotating extremal black holes using quantum entropy function i.e. Euclidean quantum gravity approach. Our analysis includes five dimensional supersymmetric BMPV black holes in type IIB string theory on T^5 and K3 x S^1 as well as in the five dimensional CHL models, and also non-supersymmetric extremal Kerr black hole and slowly rotating extremal Kerr-Newmann black holes in four dimensions. For BMPV black holes our results are in perfect agreement with the microscopic results derived from string theory. In particular we reproduce correctly the dependence of the logarithmic corrections on the number of U(1) gauge fields in the theory, and on the angular momentum carried by the black hole in different scaling limits. We also explain the shortcomings of the Cardy limit in explaining the logarithmic corrections in the limit in which the (super)gravity description of these black holes becomes a valid approximation. For non-supersymmetric extremal black holes, e.g. for the extremal Kerr black hole in four dimensions, our result provides a stringent testing ground for any microscopic explanation of the black hole entropy, e.g. Kerr/CFT correspondence.Comment: LaTeX file, 50 pages; v2: added extensive discussion on the relation between boundary condition and choice of ensemble, modified analysis for slowly rotating black holes, all results remain unchanged, typos corrected; v3: minor additions and correction

    Gauge Theory and the Excision of Repulson Singularities

    Get PDF
    We study brane configurations that give rise to large-N gauge theories with eight supersymmetries and no hypermultiplets. These configurations include a variety of wrapped, fractional, and stretched branes or strings. The corresponding spacetime geometries which we study have a distinct kind of singularity known as a repulson. We find that this singularity is removed by a distinctive mechanism, leaving a smooth geometry with a core having an enhanced gauge symmetry. The spacetime geometry can be related to large-N Seiberg-Witten theory.Comment: 31 pages LaTeX, 2 figures (v3: references added

    4-D gauged supergravity analysis of Type IIB vacua on K3Ă—T2/Z2K3\times T^2/Z_2

    Get PDF
    We analyze N=2,1,0N=2,1,0 vacua of type IIB string theory on K3Ă—T2/Z2K3\times T^2/Z_2 in presence of three-form fluxes from a four dimensional supergravity viewpoint. The quaternionic geometry of the K3K3 moduli space together with the special geometry of the NS and R-R dilatons and of the T2T^2-complex structure moduli play a crucial role in the analysis. The introduction of fluxes corresponds to a particular gauging of N=2, D=4 supergravity. Our results agree with a recent work of Tripathy and Trivedi. The present formulation shows the power of supergravity in the study of effective theories with broken supersymmetry.Comment: AMS-LaTeX, 29 page
    corecore