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ABSTRACT

In six spacetime dimensions, the heterotic string is dual to a Type IIA string. On fur-
ther toroidal compacti�cation to four spacetime dimensions, the heterotic string acquires
an SL(2; Z)S strong/weak coupling duality and an SL(2; Z)T � SL(2; Z)U target space du-
ality acting on the dilaton/axion, complex Kahler form and the complex structure �elds

S; T; U respectively. Strong/weak duality in D = 6 interchanges the roles of S and T in
D = 4 yielding a Type IIA string with �elds T; S; U . This suggests the existence of a third
string (whose six-dimensional interpretation is more obscure) that interchanges the roles of
S and U . It corresponds in fact to a Type IIB string with �elds U; T; S leading to a four-
dimensional string/string/string triality. Since SL(2; Z)S is perturbative for the Type IIB

string, this D = 4 triality implies S-duality for the heterotic string and thus �lls a gap left
by D = 6 duality. For all three strings the total symmetry is SL(2; Z)S � O(6; 22;Z)TU .
The O(6; 22;Z) is perturbative for the heterotic string but contains the conjectured non-

perturbative SL(2; Z)X , where X is the complex scalar of the D = 10 Type IIB string.
Thus four-dimensional triality also provides a (post-compacti�cation) justi�cation for this

conjecture. We interpret the N = 4 Bogomol'nyi spectrum from all three points of view. In
particular we generalize the Sen-Schwarz formula for short multiplets to include intermediate
multiplets also and discuss the corresponding black hole spectrum both for the N = 4 theory
and for a truncated S � T � U symmetric N = 2 theory. Just as the �rst two strings are

described by the four-dimensional elementary and dual solitonic solutions, so the third string

is described by the stringy cosmic string solution. In three dimensions all three strings are

related by O(8; 24;Z) transformations.
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1 Introduction

An interesting special case of string/string duality [1, 2, 3, 4, 5, 6, 7] is provided by the

D = 10 heterotic string compacti�ed to D = 6 on T 4 which is related by strong/weak

coupling to the D = 10 Type IIA string compacti�ed to D = 6 on K3 [8, 9, 10, 11]. The

dilaton ~�, metric ~GMN and 2-form ~BMN of the Type IIA theory are related to those of the

heterotic theory, �, GMN and BMN , by [1, 3, 4, 6, 7]

~� = ��
~GMN = e��GMN

~H = e�� �H (1.1)

whereM = 0; : : : ; 5, H = dB+� � �, ~H = d ~B and � denotes the Hodge dual. This ensures that
the roles of 3-form �eld equations and Bianchi identities in one version of the corresponding

supergravity theory are interchanged in the other.

After further toroidal compacti�cation to D = 4 this automatically accounts for the

conjectured strong/weak coupling SL(2; Z)S duality in the resulting D = 4, N = 4 Type
IIA string and hence for the N = 4 Yang-Mills theories obtained by taking the global limit
[7]. This is because S, the four-dimensional axion/dilaton �eld, and T , the complex Kahler
form of the torus, are interchanged in going from the heterotic to the Type IIA theory.

Moreover, while the electric �eld strengths of the Kaluza-Klein gauge �elds arising from
GMN are the same in both pictures, those of the \winding" gauge �elds arising from BMN

in the heterotic theory are replaced by their magnetic duals in the Type IIA theory. Thus
the strong/weak coupling duality of the Type IIA string is just the target-space SL(2; Z)T
of the heterotic string.

However, the target space symmetry of the heterotic theory also contains an SL(2; Z)U
that acts on U , the complex structure of the torus2. This suggests that, in addition to
these S and T strings there ought to be a third U-string whose axion/dilaton �eld is U
and whose strong/weak coupling duality is SL(2; Z)U . From a D = 6 perspective, this
seems strange since, instead of (1.1), we now interchange G45 and B45. Moreover, of the two

electric �eld strengths which become magnetic, one is a winding gauge �eld and the other
is Kaluza-Klein! So such a duality has no D = 6 Lorentz invariant meaning. In fact, this
U string is a Type IIB string, a result which may also be understood from the point of

view of mirror3 symmetry: interchanging the roles of Kahler form and complex structure
(which is equivalent to inverting the radius of one of the two circles) is a symmetry of the
heterotic string but takes Type IIA into Type IIB [13, 14]. In summary, if we denote

the heterotic, IIA and IIB strings by H;A;B respectively and the axion/dilaton, complex

Kahler form and complex structure by the triple XY Z then we have a triality between the
S-string (HSTU = HSUT ), the T -string (BTUS = ATSU) and the U -string (AUST = BUTS) as

illustrated in Fig. (1).

2In this paper, the phrase U-duality will be taken to mean SL(2; Z)U called SL(2; Z)O in [7]. This should

not be confused with the U -duality of [8] where it was taken to mean the conjectured E7 duality [12] of the

toroidally compacti�ed Type II string.
3We are grateful to Xenia De La Ossa and Jan Luis for pointing out that T -U interchange is a mirror

symmetry.
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Figure 1: String/string/string triality. The solid lines correspond to string/string dualities

and the dashed lines represent mirror transformations.

The �eld theory limits of the heterotic string on T 4, the Type IIA string on K3 and
the Type IIB string on K3 are described by certain N = 2;D = 6 supergravity theories

described in section (6). As discussed in detail in section (7), each string in D = 4 will then
exhibit the same total symmetry

SL(2; Z)S �O(6; 22;Z)TU � SL(2; Z)S � SL(2; Z)T � SL(2; Z)U (1.2)

albeit with di�erent interpretations for the three SL(2; Z) factors. So although there is a
discrete symmetry under T{U interchange, there is no such U{S or S{T symmetry. As
discussed in [7], it is the degrees of freedom associated with going from 10 to 6 which are
responsible for this lack of S{T{U democracy. This will also be reected in the Bogomol'nyi
spectrum of electric and magnetic states that belong to the short and intermediate N = 4

supermultiplets. It is therefore instructive to consider �rst the simpler situation where these
modes are truncated out. This we do �rst in section (2) by truncating the N = 2;D = 6
supergravities to N = 1;D = 6 and then in section (3) by reducing these supergravities to
D = 4. We write down the action which describes the low energy limit of the S-string; it
exhibits an o�-shell (perturbative) SL(2; Z)T �SL(2; Z)U symmetry4 and an on-shell (non-

perturbative) SL(2; Z)S . Similarly, the T -string action has an o�-shell SL(2; Z)U�SL(2; Z)S
and an on-shell SL(2; Z)T , while the U -string action has an o�-shell SL(2; Z)S �SL(2; Z)T
and an on-shell SL(2; Z)U . Aside from the pedagogical usefulness of this S{T{U symmetric

truncation, which describes just 4 of the 28 gauge �elds, it will turn out that this theory
and the resulting S{T{U symmetric Bogomol'nyi spectrum, discussed in section (5), will

�nd application in N = 2 theories whose Bogomol'nyi spectrum includes multiplets which
were both short and intermediate from the N = 4 point of view. In particular we discuss

the extreme black hole spectrum [15, 16, 17, 18].

4The classical supergravities will in fact display continuous symmetries such as SL(2; R), but since these

will be broken by quantum corrections to discrete symmetries such as SL(2; Z), we shall from now on refer

only to these.
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In section (5) we provide a soliton interpretation of the three strings. We identify the S-

string with the elementary string solution of [19], the T -string with the dual solitonic string

solution of [2] and the U -string with (a limit of) the stringy cosmic string solution of [20].

In D = 3 dimensions, all three strings are related by O(4; 4;Z) transformations.

In sections (6), (7), (8) and (9) we repeat the exercise of sections (2), (3), (4) and (5),

now including the full set of states. Section (6) describes the three N = 2, D = 6 supergrav-

ities: the actions in the heterotic and Type IIA cases (together with a duality dictionary

relating the two sets of �elds) and the equations of motion in the case of Type IIB. The

compacti�cation to N = 4, D = 4 of section (7) reveals one or two surprises: although the S-

string action has an o�-shell O(6; 22;Z) which continues to contain SL(2; Z)T � SL(2; Z)U ,
the T -string action has only an o�-shell SL(2; Z)U � O(3; 19;Z) which does not contain

SL(2; Z)S . Similarly, the U -string action has only an SL(2; Z)T � O(3; 19;Z) which does

not contain SL(2; Z)S . In short, none of the actions is SL(2; Z)S invariant! This lack of

o�-shell SL(2; Z)S in the Type II actions can be traced to the presence of the extra 24 gauge

�elds which arise from the R-R sector of Type II strings: S-duality in the heterotic picture

acts as an on-shell electric/magnetic transformation on all 28 gauge �elds and continues to be

an on-shell transformation on the 24 which remain unchanged under the string/string/string
triality5.

At �rst sight, this seems disastrous for deriving the strong/weak coupling duality of the
heterotic string from target space duality of the Type II string. The whole point was to
explain a non-perturbative symmetry of one string as a perturbative symmetry of another
[7]. Fortunately, all is not lost: although SL(2; Z)S is not an o�-shell symmetry of the

Type II supergravity actions, it is still a symmetry of the Type II string theories. To
see this we �rst note that D = 6 general covariance is a perturbative symmetry of the
Type IIB string and therefore that the D = 4 Type IIB strings must have a perturbative
SL(2; Z) acting on the complex structure of the compactifying torus. Secondly we note
that for both Type IIB theories, BTUS and BUTS, S is the complex structure �eld. Thus

the T string has SL(2; Z)U � SL(2; Z)S and the U string has SL(2; Z)S � SL(2; Z)T as
required6. In this sense, four-dimensional string/string/string triality �lls a gap left by six-
dimensional string/string duality: although duality satisfactorily explains the strong/weak
coupling duality of the D = 4 Type IIA string in terms of the target space duality of the
heterotic string, the converse requires the Type IIB ingredient. The total symmetry of all

three strings is SL(2; Z)S �O(6; 22;Z)TU with the 28 gauge �eld strengths and their duals
transforming as a (2; 28).

Note that all of the three SL(2; Z)(S;T;U) take NS-NS states into NS-NS states and that

none can be identi�ed with the conjectured non-perturbative SL(2; Z)X , where X is the
complex scalar of the Type IIB theory in D = 10, which transforms NS-NS into R-R

[22, 8, 9]. However, this SL(2; Z)X is a subgroup of O(6; 22;Z). Since this is a perturbative
target space symmetry of the heterotic string, the conjecture follows automatically from

the D = 4 string/string/string triality hypothesis. Thus we can say that evidence for this
triality is evidence not only for the electric/magnetic duality of all three D = 4 strings but

5The absence of a R! 1=R T -duality symmetry of the Type II supergravity action in D = 9 has been

noted in [21].
6We are grateful to Ashoke Sen for discussions on these issues.
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also for the SL(2; Z)X of the D = 10 Type IIB string and hence for all the conjectured

non-perturbative symmetries of string theory7.

In section (8) we describe the N = 4;D = 4 Bogomol'nyi spectrum. We generalize the

heterotic string formula of Schwarz and Sen, deriving the two SL(2; Z)S � O(6; 22;Z)TU
invariant central charges Z1 and Z2. This enables us to describe the intermediate multiplets

as well as the short ones, and once again we see how the extreme black holes �t into this

classi�cation.

Section (9) generalizes (as far as is possible) the soliton interpretation of section (5) but

as discussed in [7], including the extra degrees of freedom in going from 10 to 4 causes

problems in identifying the soliton zero modes. Although it is straightforward to �nd the

heterotic string as a soliton of Type II, the converse is more problematical [10, 11]. In three

dimensions, the O(4; 4;Z) generalizes to O(8; 24;Z) [12, 23, 15, 24, 25].

Four-dimensional string/string/string triality was announced by one of us (MJD) at the

PASCOS 95 conference in Baltimore and at the SUSY 95 conference in Paris [26]. Related

results have been obtained independently by Aspinwall and Morrison [27].

2 N = 1 supergravity in D = 6

As a good guide to the kind of dualities one might expect in string theory, it pays to look �rst
at the corresponding supergravity theories. We therefore review some properties of D = 6
supergravity [28]. The theories of interest, which follow either from T 4 compacti�cation of

the D = 10 heterotic string or K3 compacti�cation of Type II, will be N = 2 supergravities
in D = 6 which yields N = 4 in D = 4. All these theories are non-minimal in the sense that
they contain additional N = 2 gauge or matter multiplets. Since such additional matter
destroys the S{T{U symmetry of the four-dimensional string we begin by examining an
N = 1 subset common to all the models of interest. We return to the full N = 2 theory in

section (6).
In terms of six-dimensional N = 1 representations, we focus on the supergravity multiplet

(GMN ;	
+A

M ; B
+
MN) and the self-dual tensor multiplet (B

�
MN ; �

+A;�). The indexA = 1; 2
labels the 2 of Sp(2) and both spinors are symplectic Majorana-Weyl. The 2-forms B+

MN

and B�MN have 3-form �eld strengths that are self-dual or anti-self-dual, respectively. Only

with the combination of one supergravity multiplet and one self-dual tensor multiplet do we
have a conventional Lagrangian formulation. In this case the bosonic �elds correspond to
the graviton, antisymmetric tensor and dilaton of string theory. This simpler theory will not
only serve as a warm-up exercise for understanding the N = 4;D = 4 superstrings but is

interesting in its own right for understanding the N = 2;D = 4 strings.

There are three theories to consider, each with the same number of physical degrees of
freedom. The �rst two theories arise from the truncation of the non-chiral N = 2 supergravity

and are related by duality: the �rst has the usual 3-form �eld strength H and the second
has the dual �eld strength ~H = e�� �H. The third theory comes from the truncation of the

7One might object that in one case we have a pre-compacti�cation explanation but in the other only a

post-compacti�cation explanation. However, having established SL(2; Z)X in the compacti�ed version, its

presence in the uncompacti�ed version then follows by blowing up the extra dimensions keeping the �xed

the complex X �eld. We are grateful to Ashoke Sen for this observation.
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chiral N = 2 supergravity. While the full chiral N = 2 theory does not admit a covariant

Lagrangian, the N = 1 truncation, involving the combination of the supergravity and tensor

multiplet given above, may be written in a conventional form. In anticipation of their future

application, we shall call these theories H, A and B, respectively.

Denoting the D = 6 spacetime indices by (M;N = 0; :::; 5), the bosonic part of the usual

action takes the form

IH =
1

2�2

Z
d6x
p
�Ge��

�
RG +GMN@M�@N� � 1

12
GMQGNRGPSHMNPHQRS

�
; (2.1)

H is the curl of the 2-form B

H = dB (2.2)

(at this point there is no Chern-Simons correction). The metric GMN is related to the

canonical Einstein metric Gc
MN by

GMN = e�=2Gc
MN : (2.3)

Similarly, the dual supergravity action is given by

IA =
1

2�2

Z
d6x

q
� ~Ge�

~�

�
R ~G + ~GMN@M ~�@N ~�� 1

12
~GMQ ~GNR ~GPS ~HMNP

~HQRS

�
: (2.4)

~H is also the curl of a 2-form ~B
~H = d ~B : (2.5)

The dual metric ~GMN is related to the canonical Einstein metric by

~GMN = e
~�=2Gc

MN (2.6)

The two supergravities are related by:

~� = ��
~GMN = e��GMN

~H = e�� �H ; (2.7)

where � denotes the Hodge dual. (Since the last equation is conformally invariant, it is not
necessary to specify which metric is chosen in forming the dual.) This ensures that the roles

of �eld equations and Bianchi identities in the one version of supergravity are interchanged
in the other. The combined �eld equations and Bianchi identities therefore exhibit a discrete
symmetry under interchange of �!��, G! ~G and H ! ~H.

Finally, while the third theory is unrelated to the other two (at least in D = 6), at this

level of truncation it has a bosonic action with a form similar to that of IA. One subtlety
is worth mentioning, however. Since this model arises from a truncation of the compacti�ed

Type IIB string which has a complex 3-form �eld strength in ten dimensions, there is some

ambiguity in the identi�cation of the dilaton ~~� and 3-form ~~H of model B, given in the action

IB =
1

2�2

Z
d6x

q
� ~~Ge�

~~�

�
R ~~G

+ ~~GMN@M
~~�@N

~~�� 1

12
~~GMQ ~~GNR ~~GPS ~~HMNP

~~HQRS

�
: (2.8)
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In particular, the SL(2; Z)X symmetry of the Type IIB supergravity will mix
~~H with its

counterpart. Nevertheless, from a stringy viewpoint, we may identify e
~~� as the string loop

expansion parameter and
~~H as the 3-form �eld strength arising from the NS-NS sector of the

string. This provides a unique de�nition of the truncated action, (2.8). Note that there is no

D = 6 Lorentz invariant dictionary between the �elds (
~~�;

~~G;
~~H) and (�; G;H) or (~�; ~G; ~H).

3 The S-U-T symmetric theory in D = 4

Now let us �rst consider the H theory, dimensionally reduced to D = 4. The combination

of the six-dimensional N = 1 supergravity and tensor multiplets reduce to give the D = 4,

N = 2 graviton multiplet with helicities (�2; 2(�3
2
);�1) and three vector multiplets with

helicities (�1; 2(�1
2
); 2(0)). In order to make this explicit, we use a standard decomposition

of the six-dimensional metric

GMN =

�
g�� +Am

� A
n
�Gmn Am

� Gmn

An
�Gmn Gmn

�
; (3.1)

where the spacetime indices are �; � = 0; 1; 2; 3 and the internal indices are m;n = 1; 2. The

remaining two vectors arise from the reduced B �eld

BMN =

�
B�� +

1
2
(Am

�Bm� +B�nA
n
� ) B�n +Am

� Bmn

Bm� +BmnA
n
� Bmn

�
: (3.2)

Four of the six resulting scalars are moduli of the 2-torus. We parametrize the internal
metric and 2-form as

Gmn = e���
 
e�2� + c2 �c
�c 1

!
; (3.3)

and

Bmn = b �mn : (3.4)

The four-dimensional metric, given by g�� , is related to the four-dimensional canonical Ein-
stein, gc�� , metric by g�� = e�gc�� where � is the four-dimensional shifted dilaton:

e�� = e��
q
detGmn = e�(�+�) : (3.5)

Thus the remaining two scalars are the dilaton � and axion a where the axion �eld a is

de�ned by
�����@�a =

p�ge��g��g��g��H��� (3.6)

where

H��� = 3(@[�B�� ] +
1

2
Am

[�F�� ]m +
1

2
Bm[�F

m
�� ])

Fm
�� = @�A

m
� � @�A

m
� (3.7)

F��m = @�Bm� � @�Bm� :

[...] denotes antisymmetrization with weight one.
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We may now combine the above six scalars into the complex axion/dilaton �eld S, the

complex Kahler form �eld T and the complex structure �eld U according to

S = S1 + iS2 = a+ ie��

T = T1 + iT2 = b+ ie��

U = U1 + iU2 = c+ ie�� : (3.8)

This complex parametrization allows for a natural transformation under the various SL(2; Z)

symmetries. The action of SL(2; Z)S is given by

S ! aS + b

cS + d
; (3.9)

where a; b; c; d are integers satisfying ad� bc = 1, with similar expressions for SL(2; Z)T and

SL(2; Z)U . De�ning the matrices MS, MT and MU via

MS =
1

S2

 
1 S1
S1 jSj2

!
; (3.10)

the action of SL(2; Z)S now takes the form

MS ! !S
TMS!S ; (3.11)

where

!S =

 
d b

c a

!
; (3.12)

with similar expressions for MT and MU . We also de�ne the SL(2; Z) invariant tensors

�S = �T = �U =

 
0 1
�1 0

!
: (3.13)

The fundamental supergravity (2.1) now becomes

ISTU =
1

16�G

Z
d4x
p�ge��

h
Rg + g��@��@�� � 1

12
g��g��g��H���H���

+
1

4
Tr(@MT

�1@MT ) +
1

4
Tr(@MU

�1@MU)

�1

4
FS��

T (MT �MU)FS
��
i
: (3.14)

The four U(1) gauge �elds Aa
S are given by A1

S� = B4�; A
2
S� = B5�; A

3
S� = A5

�; A
4
S� =

�A4
�. The three-form becomes H��� = 3(@[�B��] � 1

2
AS[�

T (�T � �U)FS��]). This action is
manifestly invariant under T -duality and U -duality, with

FS�� ! (!T
�1 � !U

�1)FS�� ; MT=U ! !TT=UMT=U !T=U (3.15)

and with �, g�� and B�� inert. Its equations of motion and Bianchi identities (but not the
action itself) are also invariant under S-duality, with T and gc�� inert and with 

FS��
a

eFS��a
!
! !�1S

 
FS��

a

eFS��a
!
; (3.16)
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Figure 2: The cube of triality. All �eld strengths are given in S-variables.

where eFS��a = �S2[(MT
�1 �MU

�1)(�T � �U)]
a
b � FS��b � S1FS��

a : (3.17)

Thus T -duality transforms Kaluza-Klein electric charges (FS
3; FS

4) into winding electric
charges (FS

1; FS
2) (and Kaluza-Klein magnetic charges into winding magnetic charges), U -

duality transforms the Kaluza-Klein and winding electric charge of one circle (FS
3; FS

2)
into those of the other (FS

4; FS
1) (and similarly for the magnetic charges) but S-duality

transforms Kaluza-Klein electric charge (FS
3; FS

4) into winding magnetic charge ( ~FS
2
;� ~FS

1
)

(and winding electric charge into Kaluza-Klein magnetic charge). In summary we have

SL(2; Z)T �SL(2; Z)U and T $ U o�-shell but SL(2; Z)S �SL(2; Z)T �SL(2; Z)U and an
S{T{U interchange on-shell. The S $ T part arises from the discrete on-shell symmetry
�! ��, G! ~G and H ! ~H in D = 6.

Now consider the two actions obtained by cyclic permutation of the �elds S; T; U :

ITUS =
1

16�G

Z
d4x

q
�~ge��

h
R~g + ~g��@��@�� � 1

12
~g��~g�� ~g�� ~H���

~H���

+
1

4
Tr(@MU

�1@MU) +
1

4
Tr(@MS

�1@MS)

�1

4
FT��

T (MU �MS)FT
��
i
; (3.18)

and

IUST =
1

16�G

Z
d4x

q
�~~ge��

h
R~~g + ~~g��@��@��� 1

12
~~g��~~g�� ~~g�� ~~H���

~~H���

+
1

4
Tr(@MS

�1@MS) +
1

4
Tr(@MT

�1@MT )

�1

4
FU��

T (MS �MT )FU
��
i
: (3.19)

The D = 6 interpretation of these actions is as follows. The action ITSU = ITUS is obtained

by reducing the dual A theory (2.4), where the four dimensional dual metric is given by
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axion= Kahler complex gauge �elds

dilaton form structure

S T U FS
1 FS

2 FS
3 FS

4

S U T FS
1 F 3

S FS
2 FS

4

U S T FS
1 FS

3 � ~FS
4 ~FS

2

U T S FS
1 � ~FS

4
FS

3 ~FS
2

T U S FS
1 � ~F 4

S F 2
S

~F 3
S

T S U FS
1 F 2

S � ~F 4
S

~F 3
S

Table 1: Triality

~g�� = e�gc�� and the 3-form �eld strength ~H is related to the pseudoscalar �eld b by

�����@�b =
q
�~ge��~g��~g��~g�� ~H��� : (3.20)

However, since mirror symmetry interchanges A and B it also yields the �eld equations
obtained by reducing the �eld equations of the B theory but with S and U interchanged.
Similarly, the action IUST = IUTS yields the �eld equations obtained by reducing the B
theory, where the four dimensional metric is now given by ~~g�� = e�gc�� and the 3-form �eld

strength
~~H is related to the pseudoscalar �eld c by

�����@�c =
q
�~~ge��~~g

�� ~~g
��~~g

�� ~~H��� : (3.21)

Once again, however, by mirror symmetry this is equivalent to reducing the A theory with S
and T interchanged. The corresponding interpretation of the �eld strengths FS, FT and FU
is given in Table 1 and Figure 2. Figure 2 visualizes the relation between all three strings.
Each side of the cube corresponds to electric or magnetic S, T or U strings. Each dimension
is related to one duality. To get from one side to an adjacent one, two �elds need to be
dualized. Mirror symmetry takes the cube into its mirror.

4 The Bogomol'nyi Spectrum

It is now straightforward to write down an S{U{T symmetric Bogomol'nyi mass formula. Let

us de�ne electric and magnetic charge vectors �aS and �aS associated with the �eld strengths
FS

a and ~FS
a
in the standard way. The electric and magnetic charges Qa

S and P a
S are given

by

FS
a
0r �

Qa
S

r2
� FSa0r �

P a
S

r2
; (4.1)

giving rise to the charge vectors

�
�aS
�aS

�
=

 
S
(0)
2 M�1

T �M�1
U S

(0)
1 �T � �U

0 ��T � �U

!ab �
Qb
S

P b
S

�
: (4.2)
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For our purpose it is useful to de�ne a generalized charge vector a~a
~~a via0

BBBBBBBBBBBBB@

111

112

121

122

211

212

221

222

1
CCCCCCCCCCCCCA
=

0
BBBBBBBBBBBBB@

��1
S

��2
S

��3
S

��4
S

�1
S

�2
S

�3
S

�4
S

1
CCCCCCCCCCCCCA
; (4.3)

transforming as

a~a
~~a ! !S

a
b!T

~a
~b!U

~~a
~~b
b

~b
~~b : (4.4)

Then the mass formula is

m2 =
1

16
T (MS

�1MT
�1MU

�1 �MS
�1�T�U � �SMT

�1�U � �S�TMU
�1) : (4.5)

Although all three theories have the same mass spectrum, there is clearly a di�erence of inter-
pretation with electrically charged elementary states in one picture being solitonic monopole
or dyon states in the other. This agrees with the N = 2 Bogomol'nyi formula of Ceresole et
al [29] and is a truncation of the generalized N = 4 mass formula derived from �rst princi-
ples in section (8). Note, however, that this is not a truncation of the N = 4 Bogomol'nyi
formula of Schwarz and Sen [30, 31]. In particular, we note that although both formulas

have SL(2; Z)S � SL(2; Z)T � SL(2; Z)U , even the truncated Schwarz-Sen formula (8.15)
only has T{U duality and not S{T{U triality. To understand this, we recall that in N = 4
supersymmetry, we have two central charges Z1 and Z2. There are three kinds of massive
multiplets: short, intermediate and long according as (m = jZ1j = jZ2j), (m = jZ1j > jZ2j)
or (m > jZ1j; jZ2j). The Schwarz-Sen formula refers only to the short multiplets. In N = 2,

however, we have only one central charge Z. There are only short and long multiplets ac-
cording as m = jZj or m > jZj. States that were only intermediate in the N = 4 theory
may thus become short in the truncation to N = 2.

A nice example of this phenomenon is provided by the extreme Reissner-Nordstrom
black hole (dilaton coupling a = 0) which in string theory is dyonic with charge vectors

� = (1; 0; 0;�1) and � = (0;�1;�1; 0) [15]. It belongs to an intermediate multiplet in the

N = 4 theory and is therefore absent from the Sen-Schwarz spectrum but belongs to a short
multiplet in the N = 2 theory and appears in the spectrum (4.5). The two N = 4 central
charges are given in section (8). Since we have identi�ed the Reissner-Nordstrom black hole

in the N = 2 spectrum, it is natural to ask which other black holes satisfy (4.5). Besides

a = 0, the dilaton coupling parameters recently discussed are a =
p
3; 1; 1=

p
3 [32, 15, 33, 34].

It turns out that all of the corresponding states indeed satisfy the Bogomol'nyi bound and
therefore preserve 1/2 of the supersymmetries in the N = 2 theory. The a =

p
3 black hole

has charge vectors � = (1; 0; 0; 0), � = (0; 0; 0; 0). To cut a long story short we set all the
vev's to zero and �nd it's mass to be (in our units) m = 1=4, according to

m2 =
Q2

4(1 + a2)
(4.6)
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where Q is the charge of the e�ective �eld strength. Mass and charges are obviously related

by (4.5). The mass of the electrically charged a = 1 black hole with � = (1; 0; 0;�1) is

m = 1=2 [15] which agrees also with (4.5). Like the a =
p
3 black hole, this solution is

elementary for the S-string, but it is dyonic for the T - and U -strings. Further dynamical

evidence for the identi�cation of a =
p
3 and a = 1 black holes with elementary NL = 1

and NL > 1 string states [15] has recently been given in [34]. Finally, the a = 1=
p
3 black

hole is dyonic in all pictures. Its charge vectors are � = (1; 0; 0;�1) and � = (0;�1; 0; 0).
The mass is m = 3=4 which can be veri�ed by truncating the supergravity theory to one

e�ective �eld strength
p
3F = F 1

S = �F 4
S = ~F 2

S along the lines of [15]. A quick comparison

with the Bogomol'nyi formula proves that the a = 1=
p
3 black hole preserves indeed 1/2 of

the supersymmetries in N = 2.

5 Soliton Interpretation

Four-dimensional string/string/string/triality suggests that it ought to be possible to de-

scribe the S-string, T -string and U -string as elementary and solitonic solutions directly in

four dimensions. This is indeed the case. The H action (2.1) admits as an elementary
solution the S-string string

ds2 = e�(�d� 2 + d�2) + dzd�z

S = a+ ie�� =
1

2�i
ln
r

r0
; (5.1)

where z = x2 + ix3 corresponds to the transverse directions and r = jzj. It also admits as a
soliton solution the dual T -string

ds2 = �d� 2 + d�2 + e��dzd�z

T = b+ ie�� =
1

2�i
ln
r

r0
: (5.2)

Furthermore, it admits as a soliton solution the U -string

ds2 = �d� 2 + d�2 + e��dzd�z

U = c+ ie�� =
1

2�i
ln
r

r0
: (5.3)

We recognize the S-string as the elementary string solution of [19] and the T -string as the
dual string solution of [2] but the U -string is given by a limit of the stringy cosmic string of

[20] where the �elds � and c are simply given by the internal metric

p
GG�1 =MU = e�

 
1 c

c c2 + e�2�

!
: (5.4)

Consequently, the U string is a solution of pure gravity in D = 6 as discussed in [20].
It follows that the A action (2.4) admits the the T string as the elementary solution and

the S- and U -strings as the solitonic solutions and that the B action (2.8) admits the U -string

12



as the elementary solution and the T - and S-strings as the solitonic solutions. Note that

we may generate new S, T - and U -string solutions by making SL(2; Z)S transformations on

(5.1), SL(2; Z)T transformations on (5.2) and SL(2; Z)U transformations on (5.3). So there

is really an SL(2; Z) family of solutions for each string. Once again, all this is consistent

with string/string/string triality.

The fundamental string solution given in (5.1) corresponds to the case where all four gauge

�elds (FS
1; FS

2; FS
3; FS

4) have been set to zero but as described in [35] a more general solution

with non-vanishing gauge �elds may be generated by making O(3; 3) transformations on the

neutral solution. Such deformations are possible since the original solution is independent

of x0 as well as x4 and x5. However, since we want to keep the asymptotic values of the �eld

con�gurations �xed, this leaves us with an O(2; 1)�O(2; 1) subgroup. Not every element of

this subgroup generates a new solution; there is a an O(2) �O(2) subgroup that leaves the

solution invariant. Thus the number of independent deformations is given by the dimension

of the coset space O(2; 1)�O(2; 1)=O(2)�O(2) which is equal to four, corresponding to the

four electric charges of U(1)4. Exactly analogous statements now apply to the T -string (5.3)

and U -string (5.3) solutions.

All of the above transformations take each string into itself. We now consider trans-
formations that map one string into another. If we compactify the H action (2.1) to three

dimensions on T 3 the on-shell SL(2; Z)S will combine with the o�-shell O(3; 3;Z) target
space duality to form an on-shell O(4; 4;Z). Similar remarks apply to the A and B actions.
It follows that all three strings are mapped into one another by O(4; 4;Z) transformations.
That the stringy cosmic string was related to the elementary string in this way was pointed

out in [24]; that the dual string was also related in this way was pointed out in [25].

6 N = 2 supergravity in D = 6

The preceding discussion has shown an interesting triality structure of the H, A and B

theories when compacti�ed to four dimensions. However, until now we have omitted the
additional D = 6 matter and/or gauge �elds present in all models. In this section we examine
the full D = 6, N = 2 theories, and in the next section we incorporate the additional �elds
into string/string/string triality.

We begin by focusing on the heterotic string compacti�ed on a generic torus to D = 6
[36]. The low-energy limit of this theory is described by a non-chiral N = 2 supergravity
with one graviton multiplet and 20 Yang-Mills multiplets. The bosonic action is given by

IH =
1

2�2

Z
d6x
p
�Ge��

h
RG +GMN@M�@N�� 1

12
GMQGNRGPSHMNPHQRS

+
1

8
GMNTr(@MML@NML)� 1

4
GMPGNQFMN

a(LML)abFPQ
b
i

(6.1)

where AM
a are 24 abelian gauge �elds and HMNP = 3(@[MBNP ] +

1
2
A[M

aLabFNP ]
b). The 80

scalars parametrize an O(4; 20)=O(4) � O(20) coset and are combined into the symmetric

24 � 24 dimensional matrix M satisfying MLM = L where L is the invariant metric on
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O(4; 20):

L =

0
B@
0 I4 0

I4 0 0

0 0 �I16

1
CA : (6.2)

The action is invariant under the O(4; 20;Z) target space duality transformations M !

M
T , A�

a ! 
a
bA�

b, G�� ! G�� , B�� ! B�� , �! �, where 
 is an O(4; 20;Z) matrix

satisfying 
TL
 = L. The full IH action is invariant under non-chiral six-dimensional N = 2

supersymmetry transformations. For convenience in writing down fermionic equations, we

use an underlying D = 10 notation where the four D = 6 symplectic Majorana-Weyl spinors

of the N = 2 theory may be combined into a ten-dimensional Majorana-Weyl spinor �. Since

we will need the supersymmetry transformations of the gravitino and dilatino when deriving

the Bogomol'nyi mass bound, we list them here:

� M =

"
rM � 1

8
HMNP�

NP +
1

2
p
2
(V LF )aRMN�

N�a � 1

4
(@MVRV

�1
R )ab�

ab

#
�

�� = � 1

4
p
2

"
�M@M�� 1

6
HMNP�

MNP +
1

2
p
2
(V LF )aRMN�

MN�a
#
� (6.3)

where the Dirac matrices may be given a ten-dimensional interpretation, �(10) = f�A;�ag,
with six-dimensional Dirac matrices �M = EA

M�A [37].
Turning to the Type IIA string compacti�ed on K3, we �nd an identical massless spec-

trum, corresponding to one N = 2 supergravity multiplet coupled to 20 N = 2 Yang-Mills

multiplets [38]. This time the action is given by

IA =
1

2�2

Z
d6x

q
� ~Ge�

~�
h
R ~G + ~GMN@M ~�@N ~�� 1

12
~GMQ ~GNR ~GPS ~HMNP

~HQRS

+
1

8
~GMNTr(@M ~ML@N ~ML)� 1

4
e
~� ~GMP ~GNP ~F a

MN(L
~ML)ab ~FPQ

b
i

� 1

2�2

Z
d6x

1

16
�MNPQRS ~BMN

~FPQ
aLab ~FRS

b ; (6.4)

where now ~H has no Chern-Simons corrections, ~H = d ~B. The action (6.4) has the same
O(4; 20;Z) symmetry as (6.1) [39]. In particular, the matrix ~M of scalars satis�es the
constraint ~ML ~M = L.

Under heterotic/Type IIA duality we have the following dictionary [7, 9] relating the

two sets of �elds:

~� = ��
~GMN = e��GMN

~H = e�� �H (6.5)
~AM = AM

~M = M : (6.6)

This gives, in particular, the Type IIA gravitino and dilatino supersymmetry transforma-

tions

� ~ M =

"
~rM � 1

8
~HMNP�

7̂~�NP
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� 1

8
p
2
e
~�=2( ~V ~L ~F )aRNP (

~�M ~�NP � 4�M
N ~�P )�a � 1

4
(@M

~VR
~V �1R )ab�

ab

#
~�

�~� =
1

4
p
2

"
~�M@M ~� +

1

6
~HMNP�

7̂~�MNP � 1

2
p
2
e
~�=2( ~V ~L ~F )aRMN

~�MN�a
#
~� (6.7)

where �7̂ is the six-dimensional chirality operator with eigenvalues �1. Actually, (6.4) is not
quite the action obtained by compactifying IIA supergravity on K3 which really has only

23 vectors and one 3-form potential AMNP [40]; we have taken the liberty of dualizing the

3-form. Note that before dualizing the o�-shell symmetry is only O(3; 19;Z).

Finally we consider the compacti�cation of the Type IIB theory on K3 [41]. Since this

theory is chiral in ten dimensions, it yields the chiral N = 2 theory in six dimensions with 1

supergravity and 21 tensor multiplets. While this theory has no covariant action, the equa-

tions of motion for the (anti)-self-dual three-forms may be determined from the well-known

properties of K3. Details of this procedure are presented in the appendix. The resulting

equations have an on-shell O(5; 21; Z) invariance with 5 � 21 = 105 scalars parametrizing

the coset O(5; 21)=O(5) � O(21). There are 21 + 5 = 26 chiral 3-forms, which we denote

collectively as
~~H i�
3 , satisfying the (anti)-self-duality condition

~~H i�
3 = ~~�ij � ~~H j�

3 ; (6.8)

with

~~� =

0
BBBBB@

�1
1
�1

1
�ij

1
CCCCCA : (6.9)

We have written ~~H i�
3 in a given order such that the �rst 4 �elds correspond to the self-

dual and anti-self-dual components of H(1) and H(2) (the ten-dimensional NS-NS and R-R
3-forms, respectively). The remaining 22 chiral 3-forms come from the compacti�cation of
ten-dimensional self-dual 5-form �eld strength on K3. These chiral 3-forms as a set satisfy

26 Bianchi identities/equations of motion

d
~~Ha
3 = 0 ; (6.10)

where both sets of 3-forms are related by a vierbein

~~H3 = (~~L�1)( ~~V �1) ~~H�
3

~~H�
3 = ~~V ~~L ~~H3 : (6.11)

The O(5; 21) matrix ~~L is given by

~~L =

0
B@
��1

�1

dIJ

1
CA ; (6.12)

and ~~V satis�es
~~V �1 = [~~�

~~V
~~L]T : (6.13)
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The explicit form for
~~V is given in the appendix. The equations of motion for the bosonic

�elds of model B are given by [42]

~~RMN � 1
2

~~GMN
~~R =

1

4
~~H i�
MPQ

~~H i�
N
PQ

+Tr[@M
~~V R

~~V �1L @N
~~V R

~~V �1L ]� 1

2
~~GMNTr[@P

~~V R
~~V �1R @P

~~V R
~~V �1L ]

rM(@M
~~V R

~~V �1L )� (@M
~~V R

~~V �1)~~�(@M ~~V
~~V �1L ) =

1

6
~~H i�
MNP

~~H i�MNP

~~H i�
3 = ~~�ij � ~~H

j�
3

d
~~H i�
3 = (d

~~V
~~V �1)ij

~~H j� : (6.14)

We note that the Type IIB dilaton is included implicitly as one of the scalars in
~~V . Thus

the equations of motion are written above in a canonical framework. The supersymmetric

variation of the canonical gravitino is

�
~~ aM =

�
rM +

1

4
~~H i+
MNP�

NP (T i)ab

�
�b ; (6.15)

where the spinors �a are right-handed symplectic Majorana-Weyl with a labeling the 4 of
Sp(4) ' SO(5). The �ve self-dual 3-forms transform as a vector of SO(5) and the matrices

T i satisfy the SO(5) Cli�ord algebra fT i; T jg = 2�ij . The (anti)self-duality conditions are
essential for the closure of the supersymmetry algebra [42].

In order to gain a better understanding of model B, we may consider a few special limits.
If we set the R-R moduli to zero, then the vierbein (given in the Appendix) decomposes as

~~V a
i =

2
666666664

1p
2
e
~~�

1p
2
e
~~�

1p
2
e�=2

1p
2
e�=2

I22

3
777777775
�

2
6666664

�1 �e�~~�

1 �e�~~�

1 �e�� � 1
2
(b)2 bJ

�1 �e�� + 1
2
(b)2 �bJ

0 �Oi
Ib
I Oi

Kd
KJ

3
7777775

(6.16)
where (b)2 = BIbJdIJ . This shows explicitly the factorization into the dilaton and the
O(4; 20) moduli space of K3 with torsion. Due to the D = 10 symmetry between H(1) and

H(2), we may choose to eliminate a di�erent set of moduli, giving instead

~~V a
i =

2
666666664

1p
2
e
~~�

1p
2
e
~~�

1p
2
e�=2

1p
2
e�=2

I22

3
777777775
�

2
66666664

�1 �e�~~� � 1
2
(b0)2 �b0J

1 �e�~~� + 1
2
(b0)2 b0J

1 �e��
�1 �e��

0 Oi
Ib
0I Oi

Kd
KJ

3
77777775

(6.17)

where now the b0I are R-R moduli arising from H(2). This gives a di�erent decomposition

of O(5; 21) into O(1; 1)�O(4; 20) and hints at a symmetry under exchange of
~~�$ � where
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� is the K3 breathing mode. In fact, this is nothing but the underlying ten-dimensional

SL(2; Z)X symmetry of the Type IIB supergravity. This may be made clear by eliminating

the torsion moduli, bI = b0I = 0. In this case the matrix
~~M =

~~V T ~~V may be written

~~M = 


�MX 
MY

HI
Kd

KJ

�

 ; (6.18)

where 
 swaps entries 2 and 4. The matrices MX and MY are SL(2; Z) matrices de�ned

according to (3.10) where

X = �`+ ie�(
~~���)=2

Y = d+ ie�(
~~�+�)=2 (6.19)

(d is the single modulus arising from the ten-dimensional 4-form potential). This shows

a decomposition of O(5; 21) into O(2; 2) � O(3; 19) with the last factor identi�ed with the

moduli of K3 surfaces of constant volume. Since
~~� � � = �(10) is just the ten-dimensional

dilaton, X is exactly the �eld on which the original SL(2; Z)X acts.
This last example may be further motivated by considering a truncated version of model

B without self-dual �elds. The reduction of the original ten-dimensional 3-forms gives

IH
(i)

B =
1

4�2

Z �
e�

~~�H
(1)
3 �H(1)

3 + e��H
(20)
3 �H(20)

3

�
: (6.20)

The H(i) are related to their counterparts in D = 10 and are explicitly de�ned in the ap-
pendix. The on-shell symmetry of this version is the O(2; 2;Z) subgroup of O(5; 21;Z) acting

on the �rst four components. One subgroup of this O(2; 2;Z) is the discussed SL(2; Z)X.
Another interesting one is the O(1; 1;Z) ' Z2 acting on the �rst two components. This

transformation takes H(1) into e�
~~� � H(1) and ~~� into �~~� and is therefore a strong/weak

duality transformation for the Type IIB string. This transformation is precisely the one
transforming the T -string into the U -string.

7 Reduction to D = 4

When models H, A and B are reduced to four dimensions, they all give rise to D = 4, N = 4
supergravities coupled to 22 Yang-Mills multiplets. From the heterotic point of view, it is

straightforward to compactify the six-dimensional theory, given by (6.1), to four dimensions

on a two-torus. The resulting bosonic action may be written

I4H =
1

16�G

Z
d4x
p�ge��

�
R+ (@�)2 � 1

12
H���

2 +
1

8
Tr(@ML@ML)� 1

4
F��

T (LML)F��

�
;

(7.1)
where the four-dimensional variables are given by the standard dimensional reduction tech-
niques. In particular, the 28 gauge �elds A� arise two from the metric, two from the anti-

symmetric tensor and 24 from the gauge �elds in six dimensions. We group them together

according to

A = [Ai
� Bi� A�]

T ; (7.2)
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where

A� = A� �Ai
�Ai

Bi� = Bi� �Aj
�Bij +

1
2
A
T

�LAi : (7.3)

Note that the six-dimensional gauge �elds are denoted by A� whereas the metric U(1)'s

always carry an index i = 4; 5. The scalars parametrize an O(6; 22)=O(6)�O(22) coset with
metric

L =

0
B@

I2
I2

L

1
CA (7.4)

and may be written in a vierbein form

V =

2
64

1p
2
e�1

1p
2
e�1

I24

3
75�

2
64
I2 G +B � C �AT

I2 �G+B � C �AT

0 V LA V

3
75 ; (7.5)

where C = 1
2
ATLA and G and B refer to the 4; 5 components of the respective �elds. The

3-form H is dual to the axion as given by (3:6) and may be written H��� = 3(@[�B��] +
1
2
A[�LF��]) where

B�� = B�� �Ai
�A

j
�Bij �Ai

[�(Bi�] �AT
i LA�]) : (7.6)

It is of course no surprise that this theory has an explicit O(6; 22;Z) symmetry as ex-
pected from a direct compacti�cation from ten dimensions on T 6. In fact, the above four
dimensional action could have been written directly without the extra step of compactifying
to six dimensions. However, for string/string/string triality, it is enlightning to see explicitly
the compacti�cation from D = 6 to D = 4. In particular, in the absence of scalars Ai

originating from the six-dimensional gauge �elds, we �nd the simple split

V =
1p
2
e�1

�
I2 G +B

I2 �G+B

�
� V ; (7.7)

indicating the limit

O(6; 22)

O(6) �O(22)
! O(2; 2)

O(2) �O(2)

�����
TU

� O(4; 20)

O(4) �O(20) : (7.8)

Reduction of the Type IIA theory on T 2 yields instead the four-dimensional action

I4A =
1

16�G

Z
d4x

q
�~ge�~�

h
~R+ (@~�)2 � 1

12
~H���

2 +
1

4
(Tr(@ ~G�1@ ~G) + Tr(@ ~B ~G�1@ ~B ~G�1)

+1
2
Tr(@ ~ML@ ~ML))� 1

4
( ~F i

��
~Gij

~F j
�� +

~H�i�
~Gij ~H�j�)

i

+
1

16�G

Z
d4x

q
�~ge�~�

�
�1

2
~F T
i�(L

~ML) ~Fj� ~G
ij � 1

4
FT
��(L

~ML)F��

�

+
1

16�G

Z
d4x

�
�1

8
�ij ~Bij

~F T
��L � ~F�� � 1

4
������ij2@� ~Bi�

~AT
j L

~F�� � 1

4
������ij ~B��

~F T
�iL

~Fj�

�
(7.9)
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Here, ~B�� ; ~B�i; ~F�� ; ~F�i are the components of six-dimensional �elds of (6.4), and ~H; ~F are

the shifted �elds:

~H��i = ~H��i � 2 ~Aj
[�@�]

~Bij

~F�� = ~F�� + 2 ~A
j
[�@�]

~Aj ; (7.10)

where ~Ai
� are the gauge �elds arising from the compacti�cation of the metric ~G as in (3.1)

with ~F i
�� as their �eld strengths. ~H��� is the three-form �eld strength with the standard

Bianchi-identity arising from the metric and antisymmetric tensor gauge �elds.

The duality map relating model HSTU to model ATSU is given by

metric ~g�� = e���g��

U �eld ~Gij = e���Gij

S{T interchange ~� = � ~a = �1
2
�ijBij

~� = � ~Bij = ��ija
metric gauge �elds ~Ai

� = Ai
�

H gauge �elds ~H��i = e����i
j � H��j

D = 6 �elds ~A� = A�
~Ai = Ai

~M =M ; (7.11)

where �(~�) and �(~�) are the dilatons/T-moduli of the relevant theories.
When reduced to four dimensions, model B loses its chirality and now admits a La-

grangian formulation. Each six-dimensional three-form of de�nite chirality reduces to a sin-
gle U(1) �eld strength and one scalar. Thus the 28 four-dimensional gauge �elds come two

from the reduction of the metric and 26 from ~~H3. Prior to the imposition of the self-duality
conditions, the latter �eld strengths are given by

~~F a
i �� = 2@[�

~~Ba
i�]

~~Ba
i� =

~~Ba
i� � ~~Aj

�
~~Ba
ij ; (7.12)

where i = 4; 5. This gives a double counting which is eliminated by the six-dimensional

self-duality conditions, (6.8). Thus

~~F�i �� = �i
j� � ~~F� ; (7.13)

where
~~F�i �� = ~~V ( ~~F i �� +

~~Bij
~~F j
��) : (7.14)

Reduction of the six-dimensional 3-form �eld equations then give

r�

�
~~L ~~Mab(

~~F a��
i + ~~Bb

ij
~~F j ��)� �i

j ~~Bjk � ~~F k ��

�
= 0 ; (7.15)

which is a set of 2 � 26 equations and should be viewed as a combination of both Bianchi
identities and equations of motion. The remaining equations of motion may similarly be

reduced. We may then construct a Type IIB action which yields these equations of motion,

although there is some ambiguity in whether to choose p-forms or their duals. The canonical
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choice is obtained by mirror transformation of the Type IIA action, yielding the BTUS

model. The duality map relating HSUT to AUST is obtained by repeating (7.11) for the

mirror-transformed heterotic string, and the AUST dilaton is then �. The heterotic-Type

IIB dictionaries are then obtained by performing mirror transformations on the Type IIA

strings.

From the conjectured six-dimensional heterotic/Type IIA duality and the connection

between IIA and IIB via mirror symmetry it follows that we have indeed a triality between

all three strings in D = 4; beyond the simpli�ed discussion of section (3). However, since U

and T are embedded in the full O(6; 22;Z) whereas S is not, the elegant exchange symmetries

S=T and S=U are destroyed. Note that the ATSU action (7.9) has only SL(2; Z)U o�-shell

(besides the obvious O(4; 20;Z)) even though, as explained in the Introduction, the string

has also an SL(2; Z)S . Similarly the Type BUTS action has only SL(2; Z)T o�-shell even

though the Type IIB string has also an SL(2; Z)S . Consequently, none of the three actions

is SL(2; Z)S invariant, in contrast to the truncated H;A;B actions discussed in section

(3). Since SL(2; Z)S is still a perturbative Type IIB symmetry, however, four-dimensional

string/string/string triality still implies the S-duality of the heterotic string.

8 Bogomol'nyi Spectrum

We may derive the Bogomol'nyi mass bound in this theory by following a Nester procedure
[43, 19, 44]. Since masses are de�ned with respect to a canonical metric, it is convenient

to work in canonical variables (which we denote by a caret). From a supergravity point of
view, this mass bound originates from the N -extended supersymmetry algebra with central
charges [45, 46]. Thus we start by noting that, up to equations of motion, the supercharge
(parametrized by �) is given by

Q� =
Z
����r� ̂�d�� =

Z
���� ̂�d��� : (8.1)

Therefore the anticommutator of two supercharges is

fQ�; Q�0g = ��Q�0 =
Z
N��d��� ; (8.2)

where N�� = �0����� ̂� is a generalized Nester's form.
Just as the canonical Einstein metric is Weyl scaled by the dilaton relative to the �-model

metric, the canonical gravitino is shifted by the dilaton:

 ̂� = e�=4( � +
p
2��) : (8.3)

Since the reduction of the six-dimensional supersymmetry transformations, (6.3), gives

� � =

"
r� � 1

8
H���

�� +
1

2
p
2
(V RLF)a����a + � � �

#
�

�� = � 1

4
p
2

"
�@�� � 1

6
H���

��� +
1

2
p
2
(V RLF)a�����a + � � �

#
� ; (8.4)

20



Nester's form may be expressed as

N�� = �0����� ̂�

= �0���
h
r� +

1

24
e��H���(�

��� � 3��
���)

� 1

8
p
2
e��=2(V RLF)a��(��� � 4��

��)�a + � � �
i
�

= N0
�� +

1

2
p
2
e��=2�0(V RL(F � i5 � F)��)a�a�+ � � � : (8.5)

In the last line, N0
�� is Nester's original expression [43], which gives the ADM mass when

integrated over the boundary at spatial in�nity

�0P�
�� =

1

4�G

Z
S2
1

�N0 : (8.6)

De�ning the charges by the asymptotic behavior of the gauge �elds

F0r � Q

r2
� F0r � P

r2
; (8.7)

the surface integral of Nester's form gives

1

4�G

Z
S21

�N = �0
"
P�

� +
1

2
p
2G

e��0=2(V RL(Q� i5P ))a�a
#
� : (8.8)

Either application of the supersymmetry algebra or explicit calculation then insures that
this expression must be non-negative (provided the equations of motion are satis�ed). From
a four-dimensional N = 4 point of view, the Bogomol'nyi bound may then be written

M � jZ1j; jZ2j ; (8.9)

where8

jZ1;2j2 = 1

(4G)2
e��0

"
Q2
R + P 2

R � 2
�
Q2
RP

2
R � (QRPR)

2
�1
2

#
: (8.10)

The six electric and six magnetic right-handed charges are given by

Qa
R =

p
2(V RLQ)

a ; (8.11)

(and similarly for PR). This generalizes the Bogomol'nyi bound of [44], which holds only

when the two central charges are identical, jZ1j = jZ2j.
Note that using (A.4), the square of the right handed charges may be expressed as the

O(6; 22;Z) invariant combination

QR
2 = QTL(M + L)LQ : (8.12)

8These central charges have been noted independently by Cveti�c and Youm in [18]. Note, however, that

our Nester procedure does not yield the extra charge constraint found in [18] on the basis of black hole

solutions.
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This allows us to write the central charges as

jZ1;2j2 = 1

16G

�
iaMSij(M + L)abjb �

q
(ia�ijjb)(kc�klld)(M + L)ac(M + L)bd

�
;

(8.13)

where the electric and magnetic charges have been combined into a single SL(2; Z) �
O(6; 22;Z) vector

ia =

�
�aS
�aS

�
=

 
e��0M

�1 �a(0)L
0 L

!ab �
Q

P

�b
: (8.14)

The �rst feature to notice is that they are manifestly SL(2; Z)S invariant which is of relevance

for S-duality invariance of heterotic string theory. It is a well-known fact [24] that the

spectrum of states in the short N = 4 multiplets is SL(2; Z)S invariant. In that case

jZ1j = jZ2j and we recover from (8.13) the Schwarz-Sen formula

M2 =
1

16G2
iaMSij(M + L)abjb: (8.15)

However, a discussion for the intermediate multiplets was missing so far. The masses of the
states in those multiplets are given by m = Max(jZ1j; jZ2j). Due to the familiar nonrenor-
malization theorems the central charges do not receive any quantum corrections which also

implies that the masses are not renormalized. S-invariance of (8.13) now gives the expected
result that the full supersymmetric mass spectrum has that property.

For the truncated set of �elds considered in section (4), we return to the notation of
right-handed charges QR and PR. If only charges 1 and 2 are active, the central charges then
reduce to

(4G)2jZ1j2 = e��0[(QR
1 + PR

2)2 + (QR
2 � PR

1)2]

(4G)2jZ1j2 = e��0[(QR
1 � PR

2)2 + (QR
2 + PR

1)2] : (8.16)

This corresponds to the mass bound (4.5) of section (4), and agrees with the formula of
[47, 17].

Now we are ready to repeat the analysis of section (4) for the various black hole types.

Again we choose vanishing background. For dilaton couplings a =
p
3 and a = 1 the square

root term vanishes which implies jZ1j = jZ2j and (8.13) reduces to the Schwarz-Sen mass

formula. It was shown in [15] that both black holes satisfy that Bogomol'nyi bound and
therefore preserve 1/2 of the supersymmetries in N = 4. What happens to the other two
black holes when embedded in the N = 4 theory? For the a = 1=

p
3 black hole with charge

vectors as given in section (4) (the additional 24 electric and 24 magnetic charges are zero)
we �nd jZ1j = 3=4 and jZ2j = 1=4. With the knowledge that the mass was given by m = 3=4

we conclude that this state preserves only one supersymmetry in N = 4. This also holds
for dilaton coupling a = 0. Here we �nd m = jZ1j = 1, Z2 = 0, leading to the same

supersymmetry structure. Both black holes are in intermediate multiplets of the N = 4
supersymmetry algebra.

It is also instructive to examine the Bogomol'nyi mass bound from the model A point of

view. In this case we start with the supersymmetry variation of the four-dimensional Type
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IIA gravitino

� ~̂ � =
h
r� +

1

24
e�~� ~H����

7̂(�
��� � 3��

���) (8.17)

+
1

16
(e�~�=2( ~Gij

~F
j
�� +

~H�i��
7̂)�i +

p
2e�~�=2( ~VR ~L ~F)a���a)(��� � 4��

��) + � � �
i
� :

This gives for Nester's expression

~N�� = ~N0
�� + �0

"
1

4
e�~�=2

�
( ~Gij

~F j�� + �ij � ~H�j� )� i5( ~Gij � ~F j�� � �ij ~H�j�)
�
�i

+
1

2
p
2
e�~�=2( ~VR ~L( ~F � i5 � ~F ))a���

a
i
� : (8.18)

This shows that, as far as the six-dimensional gauge �elds are concerned, the Type IIA

mass bound is identical to that of the Heterotic string. Indeed, since the S{T interchange is

only applicable to the 6 ! 4 �elds, only their contributions to the Bogomol'nyi bound are

modi�ed.
From (8.18) we see that the four charges coming from the compacti�cation on T 2 enter

into the mass formula in the combinations

~Qa = ~Qa
G + �ab ~P

b
B

~P a = ~P a
G � �ab ~Q

b
B ; (8.19)

where ~QG and ~QB are de�ned by the asymptotic behavior

~Ei
aF i

0r �
~Qa
G

r2

~Ei
aH0ir �

~Qa
B

r2
(8.20)

(E is the 4,5 components of the vierbein) and similarly for ~PG and ~PB). The two central
charges are then given by

j ~Z1;2j2 = 1

(4G)2

�
~Q2 + ~P2 � 2

�
~Q2 ~P2 � ( ~Q ~P)2

� 1
2

�
; (8.21)

where we have grouped the 12 charges according to

~Q = [e�~�=2 ~Qa e�~�=2 ~Qa
R]

T : (8.22)

The right-handed charges ~Qa
R are related to the charges carried by the six-dimensional gauge

�elds
~Qa
R =

p
2 ~VR ~L ~Qa

F ; (8.23)

and correspond exactly to their heterotic counterparts ( ~Qa
R = Qa

R for a = 6; : : : 9). Analogous

de�nitions hold for ~P.
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For vanishing ~Qa
R, the central charges become

(4G)2j ~Z1j2 = e�~�0[( ~QR
1 + ~P 2

R)
2 + ( ~QR

2 � ~PR
1)2]

(4G)2j ~Z2j2 = e�~�0[( ~QL
1 � ~P 2

L)
2 + ( ~QL

2 + ~PL
1)2] ; (8.24)

where the 6! 4 charges are grouped into the combination

~QR
a = ~Qa

G + ~Qa
B

~QL
a = ~Qa

G � ~Qa
B : (8.25)

For the Type IIB string, we once again start with the four-dimensional gravitino variation

�
~̂~ =

�
r� � 1

16
~~Gij

~~F j
��(�

�� � 4��
��)�i � 1

16
~~Fa+
i ��(�

�� + 4��
��)�iT a

�
PR� : (8.26)

Since the spinors are chiral in six dimensions, we have explicitly inserted the projection

PR = 1
2
(1 + �7̂) = 1

2
(1 + 5�3̂) into the above. Taking into account the self-duality of

~~F+,

we arrive at

~~N�� = ~~N��
0 + �0

�
1

4
~~Gij(

~~F j �� � i5 � ~~F j ��)�i � 1

4
( ~~Fa+��

i � i5 � ~~Fa+��
i )�iT a

�
PR�+ � � � :

(8.27)
In this picture it is natural to de�ne the Kaluza-Klein electric and magnetic charges

~~F i
0r �

~~Qi

r2
� ~~F i

0r �
~~P i

r2
: (8.28)

For the remaining gauge �elds, we may de�ne the 2� 26 charges

~~Fa+
i 0r �

Q
a

i

r2
: (8.29)

Self-duality then gives the relation between \electric" and \magnetic" charges, Q
a

i = �i
jP

a

j .
With these de�nitions, the central charges in model B have the form

j ~~Z1;2j2 =
1

(4G)2

"
(
~~Qi + �ij

~~P j)2 + 2Q
a �Qa

+ P
a� P a

�2
�
4( ~~P � P a

+ ~~Q �Qa
)2 + 2(Q

a� P b
Q
a � P b �Q

a� P b
Q
b � P a

)

� 1
2

#
: (8.30)

The contractions denoted by � are over i = 4; 5 and are done with the metric ~~G.

For the truncated models of section (3), only one of the six-dimensional �elds is active.

In this case, the two central charges reduce to

j ~~Z1;2j2 = 1

(4G)2

X
i=4;5

�
~~Qi + �i

j ~~P j � (Qi + �i
jP )

�2
: (8.31)
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string central charge

S{string Z1
2 = (QR

1 + PR
2)2 + (QR

2 � PR
1)2

Z2
2 = (QR

1 � PR
2)2 + (QR

2 + PR
1)2

T{string ~Z1
2 = ( ~QR

1 + ~PR
2)2 + ( ~QR

2 � ~PR
1)2

~Z2
2 = ( ~QL

1 � ~PL
2)2 + ( ~QL

2 + ~PL
1)2

U{string
~~Z1

2 = (
~~QR

1 +
~~PR

2)2 + (
~~QR

2 � ~~PR
1)2

~~Z2
2 = (

~~QL
1 +

~~PL
2)2 + (

~~QL
2 � ~~PL

1)2

Table 2: Central charges for the three theories. We have removed a prefactor of 4G as well

as the asymptotic value of the dilaton �eld.

As previously, we denote left- and right-handed charges (with the vierbein removed) in the

combinations

~~QR;L = ~~E ~~Q� ~~E�1Q

~~PR;L =
~~E
~~P � ~~E�1P (8.32)

so that the central charges of (8.31) may be written

(4G)2j ~~Z1j = ( ~~QR
1 + ~~PR

2)2 + ( ~~QR
2 � ~~PR

1)2

(4G)2j ~~Z2j = (
~~QL

1 +
~~PL

2)2 + (
~~QL

2 � ~~PL
1)2 : (8.33)

Compared to (8.16) the charges have no dilaton prefactor since they have been de�ned
canonically. This completes the identi�cation of the central charges in all three models.

The central charges of the truncated theories, as given by (8.16), (8.24) and (8.33), are
summarized in Table 2. Naturally, in the heterotic (S) language we verify the result of [44]
that only the right-handed charges contribute to the central charges. From the Type II

point of view we �nd a democracy between right- and left-handers. Each handedness goes
along with one central charge. Naturally, the same result is obtained by dualizing the central
charges of the heterotic string. This implies that the dual of the N = 4 heterotic string must
be a Type II string.

Although the physical states of all three strings must be identical as a condition for

string/string/string triality, the interpretation of the spectrum in terms of elementary versus
solitonic excitations is di�erent in the heterotic and Type II theories (in D = 4 the IIA

and IIB elementary massive spectra have identical interpretations). In order to examine the
elementary string excitations, we set all magnetic charges to zero in the mass bound. For

the truncated heterotic theory, Table 2 gives

jZ1j2 = jZ2j2 = 1

(4G)2
e��0 [(QR

1)2 + (QR
2)2] ; (8.34)

which indicates that all Bogomol'nyi saturated elementary states in the heterotic theory fall

into short multiplets. For the NS sector of the heterotic string, the mass formula for string
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states, M2 = L0 = L0, becomes

M2 =
1

16G2
e��0 [(QL)

2 + (NL � 1)] =
1

16G2
e��0[(QR)

2 + (NR � 1
2
)]

= jZ1j2 + 1

16G2
e��0[(NR � 1

2
)] ; (8.35)

giving the well-known result that the elementary heterotic states saturating the Bogomol'nyi

bound must satisfy NR = 1
2
[48, 15].

On the other hand, from a Type II point of view, the central charges are given by

j ~Z1j2 = 1

(4G)2
e�~�0[( ~QR

1)2 + ( ~QR
2)2] j ~Z2j2 = 1

(4G)2
e�~�0[( ~QL

1)2 + ( ~QL
2)2] : (8.36)

Thus the elementary Type II string excitations saturating the Bogomol'nyi bound may fall

in either short or intermediate representations depending on whether ( ~QL)
2 = ( ~QR)

2 or not.

The Type II string mass formula in the NS-NS sector is9

M2 =
1

(4G)2
e�~�0[( ~QL)

2 + ( ~NL � 1
2
)] =

1

(4G)2
e�~�0[( ~QR)

2 + ( ~NR � 1
2
)]

= j ~Z2j2 + 1

(4G)2
e�~�0[( ~NL � 1

2
)] = j ~Z1j2 + 1

(4G)2
e�~�0[( ~NR � 1

2
)] : (8.37)

This indicates that Bogomol'nyi states are in short multiplets for ~NL = ~NR = 1
2
and inter-

mediate multiplets for ~NL > ~NR = 1
2
or ~NR > ~NL = 1

2
.

9 String and �vebrane solitons

When the full set of �elds are included, one may once again �nd the three string soliton
solutions of section (3) but now the zero-mode structures will be more complicated. Ideally,

in fact, one would like them to correspond to the worldsheet �eld content of the heterotic,
Type IIA and Type IIB superstrings.

That the Type IIA theory in D = 6 admits a soliton with the correct heterotic zero-
modes was discussed in [10, 11]. Just as we found the 4-parameter deformation in section
(5) by making O(2; 1)=O(2) � O(2; 1)=O(2) transformations on the neutral solution so we

may �nd the extra 24 parameters by making O(20; 1)=O(20)�O(4; 1)=O(4) transformations.
When combined with the translation modes and their fermionic partners, one �nds in this

way for the physical degrees of freedom a total of 8 right moving bosons, 8 right moving

fermions and 24 left moving bosons appropriate to the fundamental heterotic string [10]. In
fact, the same result may be obtained [11, 49, 40] by starting with the physical zero modes

of the Type IIA �vebrane soliton in D = 10 [22], namely the d = 6 chiral supermultiplet
(B��� ; �

I ; �[IJ ]), and wrapping the �vebrane around K3 [4].

Finding the Type II strings as solitons of the heterotic string is more problematical,

however. Although the zero modes associated with the 4 NS charges may be obtained in the

9Space-time bosons in the R-R sector satisfy a similar equation. While no elementary string states carry

R-R charge, states from the R-R sector may be charged under the NS-NS gauge bosons.
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same way, this is not true of the 24 RR charges since the fundamental Type II strings do

not carry these charges [10, 11]. The problem of identifying these zero modes is akin to the

missing monopole problem [50] and requires a better understanding of the role of K3 in the

counting the dimension of the moduli space.

Since the Type IIA/heterotic duality admits a D = 10 �vebrane interpretation, one

might expect the same to be true of Type IIB now that it has been included in the picture

via four dimensional string/string/string triality. However, in this case the critical solitonic

string found in D = 4 does not seem to be related to the D = 6 string obtained by wrapping

the D = 10 �vebrane around K3 since this latter string appears not to be critical [49]. This

is in need of further study.

10 Conclusion

From one point of view, four-dimensional string/string/string triality seems a trivial exten-

sion of what we already knew: D = 6 string/string duality accompanied by mirror symmetry.

Yet, as we have seen, it has far-reaching consequences. D = 6 string/string duality satisfac-

tory accounts for strong/weak coupling duality of the Type IIA string in terms of SL(2; Z)T ,
the target space duality of the heterotic string, but leaves a gap in accounting for the con-
verse, because SL(2; Z)S takes R-R �elds of Type IIA into their duals. Four-dimensional
string/string/string duality �lls this gap: SL(2; Z)S is guaranteed by D = 6 general covari-
ance of the Type IIB string. Moreover, since the conjectured SL(2; Z)X of the Type IIB

string is just a subgroup of the O(6; 22;Z)TU target space duality of the heterotic string,
we see that this triality also accounts for this symmetry and hence for all the conjectured
non-perturbative symmetries of string theory.
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Note Added
After the completion of this work, we became aware of a paper by Girardello, Porrati and

Za�aroni [51], which also displays the D = 4 heterotic/IIA dictionary and also discusses
the absence of a perturbative T -duality in the Type IIA theory and hence a gap in deriving

S-duality of the heterotic string from D = 6 string/string duality [7] alone. However, this

gap is �lled by the D = 4 string/string/string triality of the present paper: SL(2; Z)S is
guaranteed by D = 6 general covariance of the Type IIB string.
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A Appendix

In this appendix we examine the compacti�cations of ten-dimensional string theories that

give rise to the six-dimensional models of section (6). For the �rst case, we consider the

heterotic string compacti�ed on T 4, giving rise to model H. A toroidal compacti�cation is

straightforward, and gives rise to the action (6.1). As far as the bosonic �elds are concerned,

all that remains is to specify the O(4; 20) matrix M . This matrix may be decomposed in

terms of a vierbein, M = V TV where V transforms as a vector under both O(4; 20;Z) and

O(4) �O(20) and satis�es

V �1 = [�V L]T ; (A.1)

where

� =

�
I4 0

0 �I20
�
: (A.2)

In terms of the original ten dimensional heterotic �elds, the vierbein may be written as

V a
b =

�
VL
VR

�
=

2
64

1p
2
E�1

1p
2
E�1

I16

3
75�

2
64
I4 (G +B + C) �A
I4 (�G+B + C) �AI

0 AT �I16

3
75 (A.3)

where the 24 gauge �elds have been arranged in the order of 4 Kaluza-Klein, 4 winding,
and 16 heterotic U(1)'s (see e.g. Ref. [35, 48]). VR and VL denotes the split of the vierbein
into right- and left-handed components transforming under O(4) and O(20) respectively and
satis�es

V T
L VL = 1

2
(M � L) V T

R VR = 1
2
(M + L) (A.4)

We now turn to the compacti�cation of D = 10 Type II strings to six dimensions. Since

the compacti�cations of interest involve K3, we �rst list some of its important properties.
The Betti numbers are given by b0 = 1, b1 = 0, b+2 = 3 and b�2 = 19, so we may choose an
integral basis of harmonic two-forms, !2 with intersection matrix

dIJ =
Z
K3
!I ^ !J : (A.5)

Since taking a Hodge dual of !I on K3 gives another harmonic two-form, we may expand
the dual in terms of the original basis

�!I = !JH
J
I : (A.6)

In this case, we �nd Z
K3
!I ^ �!J = dIKH

K
J : (A.7)

The matrix HI
J depends on the metric on K3, and hence the b+2 � b�2 = 57 K3 moduli.

Because �� = 1, HI
J satis�es the properties

HI
JH

J
K = �IK

dIJH
J
K = dKJH

J
I ; (A.8)
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so that

HJ
IdJKH

K
L = dIL : (A.9)

Since HI
J has eigenvalues �1, it may be diagonalized by a similarity transformation

Oi
JH

J
K(O

�1)Kl = �il HI
J = (O�1)I k�

k
lO

l
J ; (A.10)

where � has signature (3; 19). Using O(3)�O(19) invariance, we may always choose O such

that

dIJ = Ok
I�klO

l
J

dIJ = (O�1)I k�
kl(O�1)J l (A.11)

where dIJ is the inverse of dIJ .

For the Type IIA supergravity compacti�ed on K3, the ten-dimensional 3-form potential

gives rise to 22 six-dimensional gauge �elds and a remaining 3-form which may be dualized

as mentioned in the previous discussion. These 23 gauge �elds, plus another originating

from the 1-form potential in ten dimensions, enter into (6.4) with ~M given by a vierbein,
~M = ~V T ~V where

~V i
J =

2
64

1p
2
e�=2

1p
2
e�=2

I22

3
75�

2
64
�1 e�� + 1

2
(bIbJdIJ ) bJ

1 e�� � 1
2
(bIbJdIJ ) �bJ

0 Oi
Ib
I Oi

Kd
KJ

3
75 : (A.12)

The Oi
J contain the 57 K3 moduli, e� is the breathing mode, and the 22 bI correspond to

torsion on K3. This vierbein satis�es

~V �1 = [~� ~V ~L]T ; (A.13)

where
~L =

�
�1 0
0 dIJ

�
; (A.14)

and

~� =

0
B@
�1

1

�ij

1
CA : (A.15)

In ten dimensions, the Type IIB string contains both a complex scalar and a complex

3-form �eld-strength which transform into each other under SL(2; Z)X . While the complete
theory contains a 4-form potential, D4

+, with self-dual �eld strength and hence does not
admit a conventional Lagrangian formulation, it is possible to write down a truncated action

where D4
+ is absent. In natural string coordinates, the partial bosonic action is [21]

ID=10 =
1

2�102

Z
d10x

q
�G(10)e��

(10)
h
RG(10) + (@M�(10))2 � 1

12
(H

(1)

MNP )
2

+e�
(10)
�
�1

2
(@M`)

2 � 1

12
(H

(2)

MNP � `H
(1)

MNP )
2
�i
; (A.16)
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where H
(i)
3 = dB

(i)
2 . From a supergravity point of view, H(1) and H(2) are indistinguishable

due to the SL(2; Z)X symmetry. In fact, the truncated action may be written more sym-

metrically in canonical coordinates where a real dilaton need not be singled out. However

string theory indicates that there is a single dilaton as well as a single real 3-form coming

from the NS-NS sector of the string. These �elds are labeled by �(10) and H(1) in (A.16),

whereas ` and H(2) arise from the R-R sector.

In the absence of a covariant action, the full ten-dimensional equations of motion for the

bosonic �elds are given by [21]

G
(10)
MN = �10

2TMN

r2�(10) = �1

2
RG(10) +

1

2
(@�(10))2 +

1

12
(H(1))2

r2` = �1

6
H(1)(H(2) � `H(1))

d � ((`2 + e��
(10)

)H
(1)
3 � `H

(2)
3 ) = F5H

(2)
3

d � (H(2)
3 � `H

(1)
3 ) = �F5H

(1)
3

F5 = �F5

dF5 = H
(1)
3 H

(2)
3 ; (A.17)

where the stress tensor is

TMN =
1

2�102

h
�2(@M�(10)@N�

(10) � 1

2
G

(10)

MN (@�)
2) +

1

2
(H

(1)

MPQH
(1)

N
PQ � 1

6
G

(10)

MN(H
(1))2)

+e�
(10)
�
(@M`@N`� 1

2
G

(10)

MN(@`)
2) +

1

2
((H(2) � `H(1))MPQ(H

(2) � `H(1))N
PQ

�1

6
G

(10)

MN (H
(2) � `H(1))2) +

1

2 � 4!(FMPQRSFN
PQRS � 1

2
G

(10)

MNF
2)
�i
: (A.18)

F5 = dD4
+ + 1

2
�ijB

(i)
2 B

(j)
2 is the self-dual �eld strength of the Type IIB theory.

We compactify this theory by decomposing the 2-form and 4-form potentials in a basic

of harmonic forms on K3

B
(i)
2 = B

(i)
2 + �0b(i)I!I

D4
+ = D4 + �0DI

2!I + �02d !4 : (A.19)

Note that the self-duality condition for D4
+ allows us to eliminate D4 in favor of d. This

also ensures that, of the 22 DI
2, three are self-dual and 19 are anti-self-dual in D = 6

F I
3 = �F J

3 H
I
J ; (A.20)

where F I
3 = dDI

2 . Further decomposing H
(i)
3 into chiral parts gives a total of 5 self-dual

and 21 anti-self-dual 3-form �eld strengths in six dimensions. Hence the compacti�ed theory

has the �eld content of a chiral supergravity multiplet (eM
A;  IM ; B

+IJ
MN ) coupled to 21 tensor

multiplets (B�
MN ; �

I ; �IJ).

The part of the six-dimensional action containing H
(i)
3 may be written covariantly

IH
(i)

B =
1

4�2

Z �
e�

~~�H
(1)
3 �H(1)

3 + e��H
(20)
3 �H(20)

3

�
; (A.21)
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however the full theory has no covariant action. In the above,
~~� is the six-dimensional

dilaton,
~~� = �(10) + � where � �xes the size of K3

e�� =
1

V

Z
K3
�1 : (A.22)

We have also de�ned the shifted H
(20)
3 �eld by H

(20)
3 = H

(2)
3 � `H

(1)
3 .

In order to incorporate all 26 chiral 3-forms, we examine the the Bianchi identities and

equations of motion to identify the \�eld strengths" H3 satisfying dH3 = 0:

H3 = [H1 H2 �H3 H4 HI ]T ; (A.23)

where

H1 = H
(1)
3

H2 = e�
~~� �H(1)

3 � `e�� �H(20)
3 � (d+ �b1b2)(H

(20)
3 + `H

(1)
3 ) + b(2)IF J

3 dIJ +
1

2
b2b2H

(1)
3

H3 = H
(20)
3 + `H

(1)
3

H4 = e�� �H(20)
3 + (a+ (� � 1)b1b2)H

(1)
3 � b(1)IF J

3 dIJ +
1

2
b1b1(H

(20)
3 + `H

(1)
3 )

HI = F I
3 + b(2)IH

(1)
3 � b(1)I(H(20)

3 + `H
(1)
3 ) : (A.24)

We have used a short-hand notation where bibj = b(i)Ib(j)JdIJ and � is an arbitrary param-
eter.

On the other hand, the natural (anti-)self-dual �eld strengths are

~~H�
3 = [H1+

3 H1�
3 H2+

3 H2�
3 F i�

3 ]T ; (A.25)

where

H1�
3 =

1p
2
e�

~~�=2(H
(1)
3 � �H(1)

3 )

H2�
3 =

1p
2
e��=2(H

(2)
3 � �H(2)

3 )

F i�
3 = Oi

JF
J
3 : (A.26)

These 3-forms are related by a vierbein

H3 = (~~L�1)( ~~V �1) ~~H�
3

~~H�
3 = ~~V ~~LH3 ; (A.27)

which depends on the 57+22+1 K3 moduli, Oi
J ; b

(1)I; e��, and the 22+3 additional scalars

b(2)I; e�
~~�; `, and d. The O(5; 21) matrix ~~L has been de�ned in (6.12). Using (A.24) and

(A.26), we �nd for the vierbein

~~V iJ =

2
666666664

1p
2
e
~~�=2

1p
2
e
~~�=2

1p
2
e�=2

1p
2
e�=2

I16

3
777777775

(A.28)

31



�

2
66666664

�1 �(e�~~� � a`� �`b1b2 + 1
2
b2b2) ` �(a+ (� � 1)b1b2 + 1

2
`b1b1) �(b(2)J � `b(1)J)

1 �(e�~~� + a`+ �`b1b2 � 1
2
b2b2) �` (a+ (�� 1)b1b2 + 1
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`b1b1) (b(2)J � `b(1)J)
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2
b1b1) b(1)J
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(2)I 0 �Oi
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(1)I Oi
Id
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with inverse given by
~~V �1 = [~~�

~~V
~~L]T : (A.29)

Finally, the O(5; 21)=O(5)�O(21) matrix of scalars is given by
~~M =

~~V T ~~V and the 3-form

equations of motion are given by

d
~~H�
3 = d

~~V
~~V �1

~~H� : (A.30)
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