46 research outputs found

    The Vicinity of the Galactic Supergiant B[e] Star CPD-57\deg2874 from Near- and Mid-IR Long Baseline Spectro-Interferometry with the VLTI (AMBER and MIDI)

    Get PDF
    This is the author accepted manuscript. The final version is available from ASP via the link in this record.We present the first spectro-interferometric observations of the circumstellar envelope (CSE) of a B[e] supergiant (CPD−57°2874), performed with the Very Large Telescope Interferometer (VLTI) using the beam-combiner instruments AMBER (near-IR interferometry with three 8.3 m Unit Telescopes or UTs) and MIDI (mid-IR interferometry with two UTs). Our observations of the CSE are well fitted by an elliptical Gaussian model with FWHM diameters varying linearly with wavelength. Typical diameters measured are ≅ 1.8 × 3.4 mas or ≅ 4.5×8.5 AU (adopting a distance of 2.5 kpc) at 2.2 μm, and ≅ 12×15 mas or ≅ 30 × 38 AU at 12 μm. We show that a spherical dust model reproduces the SED but it underestimates the MIDI visibilities, suggesting that a dense equatorial disk is required to account for the compact dust-emitting region observed. Moreover, the derived major-axis position angle in the mid-IR (≅ 144°) agrees well with previous polarimetric data, hinting that the hot-dust emission originates in a disk-like structure. Our results support the non-spherical CSE paradigm for B[e] supergiants

    Giant enhancement and control of second-harmonic radiation from algaas nanoantennas

    Full text link
    © 2017 Institute of Electrical and Electronics Engineers Inc. All Rights Reserved. We fabricate AlGaAs nanoantennas on a glass substrate and demonstrate the highest nonlinear conversion efficiency of 10-4 with the capability for shaping the radiation patterns and polarization of the second harmonic emission in both forward and backward directions. We also decode dynamic multipolar contributions to the second harmonic generation within such nanoantennas

    PT-Symmetric Dimer in a Generalized Model of Coupled Nonlinear Oscillators

    Get PDF
    Abstract In the present work, we explore the case of a general PT -symmetric dimer in the context of two both linearly and nonlinearly coupled cubic oscillators. To obtain an analytical handle on the system, we first explore the rotating wave approximation converting it into a discrete nonlinear Schrödinger type dimer. In the latter context, the stationary solutions and their stability are identified numerically but also wherever possible analytically. Solutions stemming from both symmetric and anti-symmetric special limits are identified. A number of special cases are explored regarding the ratio of coefficients of nonlinearity between oscillators over the intrinsic one of each oscillator. Finally, the considerations are extended to the original oscillator model, where periodic orbits and their stability are obtained. When the solutions are found to be unstable their dynamics is monitored by means of direct numerical simulations

    Introduction to the B[e] Phenomenon

    No full text
    In this contribution we introduce the topic of this workshop with a brief history of studies of objects with the B[e] phenomenon, including its discovery and evolution of our understanding of the phenomenon. We will also review the most prominent results on selected objects published prior to the previous B[e] star conference in 2005. These include the discovery of B[e] supergiants in the Magellanic Clouds, detection of maser and laser lines in the spectrum of MWC 349A, studies of η Carinae, and a few more. This talk is planned to set up the stage for discussion of more recent results that will be presented at the conference

    The High-Order Toroidal Moments and Anapole States in All-Dielectric Photonics

    Full text link
    All-dielectric nanophotonics attracts ever increasing attention nowadays due to the possibility of controlling and configuring light scattering on high-index semiconductor nanoparticles. It opens a room of opportunities for designing novel types of nanoscale elements and devices, and paves the way for advanced technologies of light energy manipulation. One of the exciting and promising prospects is associated with utilizing the so-called toroidal moment, being the result of poloidal currents excitation, and anapole states, corresponding to the interference of dipole and toroidal electric moments. Here, higher-order toroidal moments of both types (up to the electric octupole toroidal moment) are presented and investigated in detail via the direct Cartesian multipole decomposition allowing new near- and far-field configurations to be obtained. Poloidal currents can be associated with vortex-like distributions of the displacement currents inside nanoparticles, revealing the physical meaning of the high-order toroidal moments and the convenience of the Cartesian multipoles as an auxiliary tool for analysis. High-order nonradiating anapole states accompanied by the excitation of intense near-fields are demonstrated. It is believed that the results are of high importance for both the fundamental understanding of light scattering by high-index particles and a variety of nanophotonics applications and light governing on nanoscale

    Investigation of structure and antigenic capacities of Thermococcales cell envelopes and reclassification of ``Caldococcus litoralis'' Z-1301 as Thermococcus litoralis Z-1301

    No full text
    Fourteen strains of hyperthermophilic organotrophic anaerobic marine Archaea were isolated from shallow water and deep-sea hot vents, and four of them were characterized. These isolates, eight previously published strains, and six type strains of species of the order Thermococcales were selected for the study of cell wall components by means of thin sectioning or freeze-etching electron microscopy. The cell envelopes of most isolates were shown to consist of regularly arrayed surface protein layers, either single or double, with hexagonal lattice (p6) symmetry, as the exclusive constituents outside the cytoplasmic membrane. The S-layers studied differed in center-to-center spacing and molecular mass of the constituent protein subunits. Polyclonal antisera raised against the cells of 10 species were found to be species-specific and allowed 12 new isolates from shallow water hot vents to be identified as representatives of the species Thermococcus litoralis. Thermococcus stetteri, Thermococcus chitonophagus, and Thermococcus pacificus. Of the 7 deep-sea isolates, only 1 was identified as a T. litoralis strain. Thus, hyperthermophilic marine organotrophic isolates obtained from deep-sea hot vents showed greater diversity with regard to their S-layer proteins than shallow water isolates

    Nonlinear generation of vector beams from AlGaAs nanoantennas

    No full text
    The quest for nanoscale light sources with designer radiation patterns and polarization has motivated the development of nanoantennas that interact strongly with the incoming light and are able to transform its frequency, radiation, and polarization patterns. Here, we demonstrate dielectric AlGaAs nanoantennas for efficient second harmonic generation, enabling the control of both directionality and polarization of nonlinear emission. This is enabled by specialized III–V semiconductor nanofabrication of high-quality AlGaAs nanostructures embedded in optically transparent low-index material, thus allowing for simultaneous forward and backward nonlinear emission. We show that the nanodisk AlGaAs antennas can emit second harmonic in preferential direction with a backward-to-forward ratio of up to five and can also generate complex vector polarization beams, including beams with radial polarization
    corecore