20 research outputs found

    Interaction of PLP with GFP-MAL2 in the Human Oligodendroglial Cell Line HOG

    Get PDF
    The velocity of the nerve impulse conduction of vertebrates relies on the myelin sheath, an electrically insulating layer that surrounds axons in both the central and peripheral nervous systems, enabling saltatory conduction of the action potential. Oligodendrocytes are the myelin-producing glial cells in the central nervous system. A deeper understanding of the molecular basis of myelination and, specifically, of the transport of myelin proteins, will contribute to the search of the aetiology of many dysmyelinating and demyelinating diseases, including multiple sclerosis. Recent investigations suggest that proteolipid protein (PLP), the major myelin protein, could reach myelin sheath by an indirect transport pathway, that is, a transcytotic route via the plasma membrane of the cell body. If PLP transport relies on a transcytotic process, it is reasonable to consider that this myelin protein could be associated with MAL2, a raft protein essential for transcytosis. In this study, carried out with the human oligodendrocytic cell line HOG, we show that PLP colocalized with green fluorescent protein (GFP)-MAL2 after internalization from the plasma membrane. In addition, both immunoprecipitation and immunofluorescence assays, indicated the existence of an interaction between GFP-MAL2 and PLP. Finally, ultrastructural studies demonstrated colocalization of GFP-MAL2 and PLP in vesicles and tubulovesicular structures. Taken together, these results prove for the first time the interaction of PLP and MAL2 in oligodendrocytic cells, supporting the transcytotic model of PLP transport previously suggested

    Leukodystrophies: a proposed classification system based on pathological changes and pathogenetic mechanisms

    Get PDF
    Leukodystrophies are genetically determined disorders characterized by the selective involvement of the central nervous system white matter. Onset may be at any age, from prenatal life to senescence. Many leukodystrophies are degenerative in nature, but some only impair white matter function. The clinical course is mostly progressive, but may also be static or even improving with time. Progressive leukodystrophies are often fatal, and no curative treatment is known. The last decade has witnessed a tremendous increase in the number of defined leukodystrophies also owing to a diagnostic approach combining magnetic resonance imaging pattern recognition and next generation sequencing. Knowledge on white matter physiology and pathology has also dramatically built up. This led to the recognition that only few leukodystrophies are due to mutations in myelin- or oligodendrocyte-specific genes, and many are rather caused by defects in other white matter structural components, including astrocytes, microglia, axons and blood vessels. We here propose a novel classification of leukodystrophies that takes into account the primary involvement of any white matter component. Categories in this classification are the myelin disorders due to a primary defect in oligodendrocytes or myelin (hypomyelinating and demyelinating leukodystrophies, leukodystrophies with myelin vacuolization); astrocytopathies; leuko-axonopathies; microgliopathies; and leuko-vasculopathies. Following this classification, we illustrate the neuropathology and disease mechanisms of some leukodystrophies taken as example for each category. Some leukodystrophies fall into more than one category. Given the complex molecular and cellular interplay underlying white matter pathology, recognition of the cellular pathology behind a disease becomes crucial in addressing possible treatment strategies

    Restoration of the Normal Splicing Pattern of the PLP1 Gene by Means of an Antisense Oligonucleotide Directed against an Exonic Mutation

    Get PDF
    An exonic missense mutation, c.436C>G, in the PLP1 gene of a patient affected by the hypomyelinating leukodystrophy, Pelizaeus–Merzbacher disease, has previously been found to be responsible for the alteration of the canonical alternative splicing profile of the PLP1 gene leading to the loss of the longer PLP isoform. Here we show that the presence of the c.436C>G mutation served to introduce regulatory motifs that appear to be responsible for the perturbed splicing pattern that led to loss of the major PLP transcript. With the aim of disrupting the interaction between the PLP1 splicing regulatory motifs and their cognate splicing factors, we designed an antisense oligonucleotide-based in vitro correction protocol that successfully restored PLP transcript production in oligodendrocyte precursor cells

    Myelin-derived and putative molecular mimic peptides share structural properties in aqueous and membrane-like environments

    Get PDF
    Abstract Background: Despite intense research, the causes of various neurological diseases remain enigmatic to date. A role for viral or bacterial infection and associated molecular mimicry has frequently been suggested in the etiology of neurological diseases, including demyelinating autoimmune disorders, such as multiple sclerosis. Pathogen mimics of myelin-derived autoimmune peptides have been described in the literature and shown to induce myelin autoimmune responses in animal models. Methods: We carried out a structural study on myelin-derived peptides, and mimics thereof from various pathogens, in aqueous and membrane-like environments, using conventional and synchrotron radiation circular dichroism spectroscopy. A total of 13 peptides from the literature were studied, and 290 circular dichroism spectra were analysed. In addition, peptide structure predictions and vesicle aggregation assays were performed. Results: The results indicate a high level of similarity in the biophysical and folding properties of the peptides from either myelin proteins or proteins from pathogenic viruses or bacteria; essentially all of the studied peptides folded in the presence of lipid vesicles or under other membrane-mimicking conditions, which is a sign of membrane interaction. Many of the peptides presented remarkable similarities in their conformation in different environments. Conclusions: As most of the studied epitope segments in myelin proteins are associated with membrane-binding sites, our results support a view of molecular mimicry, involving lipid membrane interaction propensity and similar conformational properties, possibly playing a role in demyelinating disease. The results suggest mechanisms related to protein amphiphilicity and order-disorder transitions in the recognition of peptide epitopes in autoimmune demyelination
    corecore