45 research outputs found

    Shell-like structures in our cosmic neighbourhood

    Full text link
    Signatures of the processes in the early Universe are imprinted in the cosmic web. Some of them may define shell-like structures characterised by typical scales. We search for shell-like structures in the distribution of nearby rich clusters of galaxies drawn from the SDSS DR8. We calculate the distance distributions between rich clusters of galaxies, and groups and clusters of various richness, look for the maxima in the distance distributions, and select candidates of shell-like structures. We analyse the space distribution of groups and clusters forming shell walls. We find six possible candidates of shell-like structures, in which galaxy clusters have maxima in the distance distribution to other galaxy groups and clusters at the distance of about 120 Mpc/h. The rich galaxy cluster A1795, the central cluster of the Bootes supercluster, has the highest maximum in the distance distribution of other groups and clusters around them at the distance of about 120 Mpc/h among our rich cluster sample, and another maximum at the distance of about 240 Mpc/h. The structures of galaxy systems causing the maxima at 120 Mpc/h form an almost complete shell of galaxy groups, clusters and superclusters. The richest systems in the nearby universe, the Sloan Great Wall, the Corona Borealis supercluster and the Ursa Major supercluster are among them. The probability that we obtain maxima like this from random distributions is lower than 0.001. Our results confirm that shell-like structures can be found in the distribution of nearby galaxies and their systems. The radii of the possible shells are larger than expected for a BAO shell (approximately 109 Mpc/h versus approximately 120 Mpc/h), and they are determined by very rich galaxy clusters and superclusters with high density contrast while BAO shells are barely seen in the galaxy distribution. We discuss possible consequences of these differences.Comment: Comments: 9 pages, 10 figures, Astronomy and Astrophysics, in pres

    The evolution of Balmer jump selected galaxies in the ALHAMBRA survey

    Full text link
    We present a new color-selection technique, based on the Bruzual & Charlot models convolved with the bands of the ALHAMBRA survey, and the redshifted position of the Balmer jump to select star-forming galaxies in the redshift range 0.5 < z < 1.5. These galaxies are dubbed Balmer jump Galaxies BJGs. We apply the iSEDfit Bayesian approach to fit each detailed SED and determine star-formation rate (SFR), stellar mass, age and absolute magnitudes. The mass of the haloes where these samples reside are found via a clustering analysis. Five volume-limited BJG sub-samples with different mean redshifts are found to reside in haloes of median masses 1012.5±0.2M\sim 10^{12.5 \pm 0.2} M_\odot slightly increasing toward z=0.5. This increment is similar to numerical simulations results which suggests that we are tracing the evolution of an evolving population of haloes as they grow to reach a mass of 1012.7±0.1M\sim 10^{12.7 \pm 0.1} M_\odot at z=0.5. The likely progenitors of our samples at z\sim3 are Lyman Break Galaxies, which at z\sim2 would evolve into star-forming BzK galaxies, and their descendants in the local Universe are elliptical galaxies.Hence, this allows us to follow the putative evolution of the SFR, stellar mass and age of these galaxies. From z\sim1.0 to z\sim0.5, the stellar mass of the volume limited BJG samples nearly does not change with redshift, suggesting that major mergers play a minor role on the evolution of these galaxies. The SFR evolution accounts for the small variations of stellar mass, suggesting that star formation and possible minor mergers are the main channels of mass assembly.Comment: 14 pages, 10 figures. Submitted to A&A. It includes first referee's comments. Abstract abridged due to arXiv requirement

    The ALHAMBRA survey: evolution of galaxy spectral segregation

    Get PDF
    We study the clustering of galaxies as a function of spectral type and redshift in the range 0.35<z<1.10.35 < z < 1.1 using data from the Advanced Large Homogeneous Area Medium Band Redshift Astronomical (ALHAMBRA) survey. The data cover 2.381 deg2^2 in 7 fields, after applying a detailed angular selection mask, with accurate photometric redshifts [σz<0.014(1+z)\sigma_z < 0.014(1+z)] down to IAB<24I_{AB} < 24. From this catalog we draw five fixed number density, redshift-limited bins. We estimate the clustering evolution for two different spectral populations selected using the ALHAMBRA-based photometric templates: quiescent and star-forming galaxies. For each sample, we measure the real-space clustering using the projected correlation function. Our calculations are performed over the range [0.03,10.0]h1[0.03,10.0] h^{-1} Mpc, allowing us to find a steeper trend for rp0.2h1r_p \lesssim 0.2 h^{-1} Mpc, which is especially clear for star-forming galaxies. Our analysis also shows a clear early differentiation in the clustering properties of both populations: star-forming galaxies show weaker clustering with evolution in the correlation length over the analysed redshift range, while quiescent galaxies show stronger clustering already at high redshifts, and no appreciable evolution. We also perform the bias calculation where similar segregation is found, but now it is among the quiescent galaxies where a growing evolution with redshift is clearer. These findings clearly corroborate the well known colour-density relation, confirming that quiescent galaxies are mainly located in dark matter halos that are more massive than those typically populated by star-forming galaxies.Comment: 14 pages, 9 figures, accepted by Ap

    Stellar populations of galaxies in the ALHAMBRA survey up to z1z \sim 1. I. MUFFIT: A Multi-Filter Fitting code for stellar population diagnostics

    Full text link
    We present MUFFIT, a new generic code optimized to retrieve the main stellar population parameters of galaxies in photometric multi-filter surveys, and we check its reliability and feasibility with real galaxy data from the ALHAMBRA survey. Making use of an error-weighted χ2\chi^2-test, we compare the multi-filter fluxes of galaxies with the synthetic photometry of mixtures of two single stellar populations at different redshifts and extinctions, to provide through a Monte Carlo method the most likely range of stellar population parameters (mainly ages and metallicities), extinctions, redshifts, and stellar masses. To improve the diagnostic reliability, MUFFIT identifies and removes from the analysis those bands that are significantly affected by emission lines. We highlight that the retrieved age-metallicity locus for a sample of z0.22z \le 0.22 early-type galaxies in ALHAMBRA at different stellar mass bins are in very good agreement with the ones from SDSS spectroscopic diagnostics. Moreover, a one-to-one comparison between the redshifts, ages, metallicities, and stellar masses derived spectroscopically for SDSS and by MUFFIT for ALHAMBRA reveals good qualitative agreements in all the parameters. In addition, and using as input the results from photometric-redshift codes, MUFFIT improves the photometric-redshift accuracy by 10\sim 10-20%20\%, and it also detects nebular emissions in galaxies, providing physical information about their strengths. Our results show the potential of multi-filter galaxy data to conduct reliable stellar population studies with the appropiate analysis techniques, as MUFFIT.Comment: 31 pages, 18 figures, accepted for publication in A&

    Shell-like structures in our cosmic neighbourhood

    Get PDF
    Context. Signatures of the processes in the early Universe are imprinted in the cosmic web. Some of them may define shell-like structures characterised by typical scales. Examples of such structures are shell-like systems of galaxies, which are interpreted as a signatures of the baryon acoustic oscillations.Aims. We search for shell-like structures in the distribution of nearby rich clusters of galaxies drawn from the SDSS DR8.Methods. We calculated the distance distributions between rich clusters of galaxies and groups and clusters of various richness, searched for the maxima in the distance distributions and selected candidates of shell-like structures. We analysed the space distribution of groups and clusters that form shell walls.Results. We find six possible candidates of shell-like structures, in which galaxy clusters have the maximum in their distance distribution to other galaxy groups and clusters at a distance of about 120-130 h(-1) Mpc. Another, less probable maximum is found at a distance of about 240 h(-1) Mpc. The rich galaxy cluster A1795, which is the central cluster of the Bootes supercluster, has the highest maximum in the distance distribution of all other surrounding groups and clusters in our rich cluster sample. It lies at a distance of about 120 h(-1) Mpc. The structures of galaxy systems that cause this maximum form an almost complete shell of galaxy groups, clusters, and superclusters. The richest systems in the nearby universe, the Sloan Great Wall, the Corona Borealis supercluster, and the UrsaMajor supercluster, are among them. The probability that we obtain maxima like this from random distributions is lower than 0.001.Conclusions. Our results confirm that shell-like structures can be found in the distribution of nearby galaxies and their systems. The radii of the possible shells are larger than expected for a baryonic acoustic oscillations (BAO) shell (approximate to 109 h(-1) Mpc versus approximate to 120-130 h(-1) Mpc), and they are determined by very rich galaxy clusters and superclusters. In contrast, BAO shells are barely seen in the galaxy distribution. We discuss possible consequences of these differences

    The ALHAMBRA Survey: Bayesian Photometric Redshifts with 23 bands for 3 squared degrees

    Full text link
    The ALHAMBRA (Advance Large Homogeneous Area Medium Band Redshift Astronomical) survey has observed 8 different regions of the sky, including sections of the COSMOS, DEEP2, ELAIS, GOODS-N, SDSS and Groth fields using a new photometric system with 20 contiguous ~ 300A˚300\AA filters covering the optical range, combining them with deep JHKsJHKs imaging. The observations, carried out with the Calar Alto 3.5m telescope using the wide field (0.25 sq. deg FOV) optical camera LAICA and the NIR instrument Omega-2000, correspond to ~700hrs on-target science images. The photometric system was designed to maximize the effective depth of the survey in terms of accurate spectral-type and photo-zs estimation along with the capability of identification of relatively faint emission lines. Here we present multicolor photometry and photo-zs for ~438k galaxies, detected in synthetic F814W images, complete down to I~24.5 AB, taking into account realistic noise estimates, and correcting by PSF and aperture effects with the ColorPro software. The photometric ZP have been calibrated using stellar transformation equations and refined internally, using a new technique based on the highly robust photometric redshifts measured for emission line galaxies. We calculate photometric redshifts with the BPZ2 code, which includes new empirically calibrated templates and priors. Our photo-zs have a precision of dz/(1+zs)=1dz/(1+z_s)=1% for I<22.5 and 1.4% for 22.5<I<24.5. Precisions of less than 0.5% are reached for the brighter spectroscopic sample, showing the potential of medium-band photometric surveys. The global P(z)P(z) shows a mean redshift =0.56 for I=0.86 for I<24.5 AB. The data presented here covers an effective area of 2.79 sq. deg, split into 14 strips of 58.5'x15.5' and represents ~32 hrs of on-target.Comment: The catalog data and a full resolution version of this paper is available at https://cloud.iaa.csic.es/alhambra

    The ALHAMBRA survey : Estimation of the clustering signal encoded in the cosmic variance

    Full text link
    The relative cosmic variance (σv\sigma_v) is a fundamental source of uncertainty in pencil-beam surveys and, as a particular case of count-in-cell statistics, can be used to estimate the bias between galaxies and their underlying dark-matter distribution. Our goal is to test the significance of the clustering information encoded in the σv\sigma_v measured in the ALHAMBRA survey. We measure the cosmic variance of several galaxy populations selected with BB-band luminosity at 0.35z<1.050.35 \leq z < 1.05 as the intrinsic dispersion in the number density distribution derived from the 48 ALHAMBRA subfields. We compare the observational σv\sigma_v with the cosmic variance of the dark matter expected from the theory, σv,dm\sigma_{v,{\rm dm}}. This provides an estimation of the galaxy bias bb. The galaxy bias from the cosmic variance is in excellent agreement with the bias estimated by two-point correlation function analysis in ALHAMBRA. This holds for different redshift bins, for red and blue subsamples, and for several BB-band luminosity selections. We find that bb increases with the BB-band luminosity and the redshift, as expected from previous work. Moreover, red galaxies have a larger bias than blue galaxies, with a relative bias of brel=1.4±0.2b_{\rm rel} = 1.4 \pm 0.2. Our results demonstrate that the cosmic variance measured in ALHAMBRA is due to the clustering of galaxies and can be used to characterise the σv\sigma_v affecting pencil-beam surveys. In addition, it can also be used to estimate the galaxy bias bb from a method independent of correlation functions.Comment: Astronomy and Astrophysics, in press. 9 pages, 4 figures, 3 table

    The ALHAMBRA survey: Accurate merger fractions by PDF analysis of photometric close pairs

    Full text link
    Our goal is to develop and test a novel methodology to compute accurate close pair fractions with photometric redshifts. We improve the current methodologies to estimate the merger fraction f_m from photometric redshifts by (i) using the full probability distribution functions (PDFs) of the sources in redshift space, (ii) including the variation in the luminosity of the sources with z in both the selection of the samples and in the luminosity ratio constrain, and (iii) splitting individual PDFs into red and blue spectral templates to deal robustly with colour selections. We test the performance of our new methodology with the PDFs provided by the ALHAMBRA photometric survey. The merger fractions and rates from the ALHAMBRA survey are in excellent agreement with those from spectroscopic work, both for the general population and for red and blue galaxies. With the merger rate of bright (M_B <= -20 - 1.1z) galaxies evolving as (1+z)^n, the power-law index n is larger for blue galaxies (n = 2.7 +- 0.5) than for red galaxies (n = 1.3 +- 0.4), confirming previous results. Integrating the merger rate over cosmic time, we find that the average number of mergers per galaxy since z = 1 is N_m = 0.57 +- 0.05 for red galaxies and N_m = 0.26 +- 0.02 for blue galaxies. Our new methodology exploits statistically all the available information provided by photometric redshift codes and provides accurate measurements of the merger fraction by close pairs only using photometric redshifts. Current and future photometric surveys will benefit of this new methodology.Comment: Submitted to A&A, 15 pages, 15 figures, 6 tables. Comments are welcome. Close pair systems available at https://cloud.iaa.csic.es/alhambra/catalogues/ClosePairs

    The ALHAMBRA survey : BB-band luminosity function of quiescent and star-forming galaxies at 0.2z<10.2 \leq z < 1 by PDF analysis

    Get PDF
    Our goal is to study the evolution of the BB-band luminosity function (LF) since z=1z=1 using ALHAMBRA data. We used the photometric redshift and the II-band selection magnitude probability distribution functions (PDFs) of those ALHAMBRA galaxies with I24I\leq24 mag to compute the posterior LF. We statistically studied quiescent and star-forming galaxies using the template information encoded in the PDFs. The LF covariance matrix in redshift-magnitude-galaxy type space was computed, including the cosmic variance. That was estimated from the intrinsic dispersion of the LF measurements in the 48 ALHAMBRA sub-fields. The uncertainty due to the photometric redshift prior is also included in our analysis. We modelled the LF with a redshift-dependent Schechter function affected by the same selection effects than the data. The measured ALHAMBRA LF at 0.2z<10.2\leq z<1 and the evolving Schechter parameters both for quiescent and star-forming galaxies agree with previous results in the literature. The estimated redshift evolution of MBQzM_B^* \propto Qz is QSF=1.03±0.08Q_{\rm SF}=-1.03\pm0.08 and QQ=0.80±0.08Q_{\rm Q}=-0.80\pm0.08, and of logϕPz\log \phi^* \propto Pz is PSF=0.01±0.03P_{\rm SF}=-0.01\pm0.03 and PQ=0.41±0.05P_{\rm Q}=-0.41\pm0.05. The measured faint-end slopes are αSF=1.29±0.02\alpha_{\rm SF}=-1.29\pm0.02 and αQ=0.53±0.04\alpha_{\rm Q}=-0.53\pm0.04. We find a significant population of faint quiescent galaxies, modelled by a second Schechter function with slope β=1.31±0.11\beta=-1.31\pm0.11. We find a factor 2.55±0.142.55\pm0.14 decrease in the luminosity density jBj_B of star-forming galaxies, and a factor 1.25±0.161.25\pm0.16 increase in the jBj_B of quiescent ones since z=1z=1, confirming the continuous build-up of the quiescent population with cosmic time. The contribution of the faint quiescent population to jBj_B increases from 3% at z=1z=1 to 6% at z=0z=0. The developed methodology will be applied to future multi-filter surveys such as J-PAS.Comment: Accepted for publication in Astronomy and Astrophysics. 25 pages, 20 figures, 7 table
    corecore