4,615 research outputs found

    About multi-resolution techniques for large eddy simulation of reactive multi-phase flows

    Get PDF
    A numerical technique for mesh refinement in the HeaRT (Heat Release and Transfer) numerical code is presented. In the CFD framework, Large Eddy Simulation (LES) approach is gaining in importance as a tool for simulating turbulent combustion pro- cesses, also if this approach has an high computational cost due to the complexity of the turbulent modeling and the high number of grid points necessary to obtain a good numerical solution. In particular, when a numerical simulation of a big domain is performed with a structured grid, the number of grid points can increase so much that the simulation becomes impossible: this problem can be overcomed with a mesh refinement technique. Mesh refinement technique developed for HeaRT numerical code (a staggered finite difference code) is based on an high order reconstruction of the variables at the grid interfaces by means of a least square quasi-eno interpolation: numerical code is written in modern Fortran (2003 standard of newer) and is parallelized using domain decomposition and message passing interface (MPI) standard

    Enhancing heat treatment efficacy for insect pest control: A case study of a CFD application to improve the design and structure of a flour mill

    Get PDF
    Heat treatment of the indoor environment of flour mills is an alternative technique to chemical fumigation for controlling insect pests. The aim of this research was to assess temperature distribution inside a flour mill during a heat treatment for insect pest control by computational fluid dynamics (CFD) modelling and simulation. The model was validated by using the average values of experimental data acquired during a heat treatment carried out in a flour mill, which is representative of the building materials and techniques used in the milling industry of South Italy. Simulations were carried out in steady-state conditions, and simulated data were validated by the average values of air and wall temperature measurements. Since the modelled temperature distribution in the mill fit the real one with a good accuracy (maximum error equal to 2.57 °C), the CFD model was considered reliable to simulate other operating conditions. Since it was observed that the internal surface temperatures of the mill were much lower than the value required for the success of the heat treatment, equal to 45 °C, the CFD model could be used for improving the effectiveness of heat treatments in the flour mill. Application of the proposed CFD model in the simulation of specific interventions could be aimed at improving both building performance and fan heaters' localisatio,n in order to find the best configuration

    Interuniversity Research Center "STEERING" - STatistics for EnginERING: Design, Quality and Reliability

    Get PDF
    Abstract In this paper we present the Interuniversity Research Center STEERING, formed in June 2017. The Research Center has been founded by three Italian Universities through five Departments. It represents the connection between Statistics and Engineering. The five Departments promoting it are the following: Department of Innovation and Information Engineering (Guglielmo Marconi University, Rome); Department of Statistics Computer Science Applications, Department of Information Engineering, Department of Industrial Engineering (University of Florence); Department of Mechanical and Civil Engineering (University of Cassino and Lazio Meridionale). The potentiality of the Research Center and some of its aims are explained through three empirical case studies

    Quasi-equilibrium lattice Boltzmann method

    Get PDF
    Abstract.: A general lattice Boltzmann method for simulation of fluids with tailored transport coefficients is presented. It is based on the recently introduced quasi-equilibrium kinetic models, and a general lattice Boltzmann implementation is developed. Lattice Boltzmann models for isothermal binary mixtures with a given Schmidt number, and for a weakly compressible flow with a given Prandtl number are derived and validate

    Observations of Isolated Neutron Stars with the ESO Multi-Conjugate Adaptive Optics Demonstrator

    Get PDF
    High-energy observations have unveiled peculiar classes of isolated neutron stars which, at variance with radio pulsars, are mostly radio silent and not powered by the star rotation. Among these objects are the magnetars, hyper-magnetized neutron stars characterized by transient X-ray/gamma-ray emission, and neutron stars with purely thermal, and in most cases stationary, X-ray emission (a.k.a., X-ray dim isolated neutron stars or XDINSs). While apparently dissimilar in their high-energy behavior and age, both magnetars and XDINSs have similar periods and unusually high magnetic fields. This suggests a tantalizing scenario where the former evolve into the latter.Discovering so far uninvestigated similarities between the multi-wavelength properties of these two classes would be a further step forward to establish an evolutionary scenario. A most promising channels is the near infrared (NIR) one, where magnetars are characterized by a distinctive spectral flattening with respect to the extrapolation of the soft X-ray spectrum.We observed the two XDINSs RX J0420.0-5022 and RX J1856.5-3754 with the Multi-Conjugate Adaptive Optics Demonstrator (MAD) at the Very Large Telescope (VLT) as part of the instrument guaranteed time observations program, to search for their NIR counterparts. Both RX J1856.5-3754 and RX J0420.0-5022 were not detected down to K_s ~20 and Ks ~21.5, respectively. In order to constrain the relation between XDINSs and magnetars it would be of importance to perform deeper NIR observations. A good candidate is 1RXS J214303.7+065419 which is the XDINS with the highest inferred magnetic field.Comment: Accepted for publication in Astronomy and Astrophysic

    Study on the Effect of Preheating Temperatures on Melt Pool Stability in Inconel 718 Components Processed by Laser Powder Bed Fusion

    Get PDF
    Laser Powder Bed Fusion (L-PBF) is one of the most widespread, versatile, and promising metal Additive Manufacturing (AM) techniques. L-PBF allows for the manufacturing of geometrically complex parts with good surface characteristics. In this process, in order to minimize the heat loss in the first layers of printing, the building platform is preheated to a temperature ranging between 80 and 250 °C. This aspect turns out to be very critical, and further investigation is needed for situations where the part to be printed is only a few layers high, as is the case in sensor printing. This work aims to investigate the melt pool stability under a variation in the preheating temperatures. We investigate the distance from the building platform, considering the number of layers printed. This is where the melt pool reaches its stability in terms of depth and width. This aspect turns out to be of remarkable importance for ensuring the structural integrity of parts with a few layers of height that are processed through L-PBF, such as sensors, which are proliferating in different industries. Thus, two case studies were carried out on IN718 superalloys at 40 and 60 microns of layer thickness and a preheating temperature of 170 °C on the machine. The results obtained show that after 1.2 mm of distance from the building platform, the melt pool reached its stability in terms of width and depth dimensions and consequently for the melting regime

    Unsteady Simulation of CO/H2/N2/air Turbulent Non-Premixed Flame

    Get PDF
    The Sandia/ETH-Zurich CO/H2/N2 non-premixed unconfined turbulent jet flame (named ‘Flame A’) is numerically simulated by solving the unsteady compressible reactive Navier– Stokes equations in a three-dimensional axisymmetric formulation, hence, in a formally twodimensional domain. The turbulent combustion closure model adopted is the Fractal Model, FM, developed as a subgrid scale model for Large Eddy Simulation. The fuel is injected from a straight circular tube and the corresponding Reynolds number is 16 700, while the air coflows. Since the thickness of the nozzle is 0.88 mm, and the injection velocity high, ?104ms?1, capturing the stabilization mechanism of the actual flame requires high spatial resolution close to the injector. Results are first obtained on a coarse grid assuming a fast-chemistry approach for hydrogen oxidation and a single step mechanism for carbon monoxide oxidation.With this approach the flame is inevitably anchored. Then, to understand the actual flame stabilization a more complex chemical mechanism, including main radical species, is adopted. Since using this chemistry and the coarse grid of previous simulation the flame blows off numerically, attention is focused on understanding the actual flame stabilization mechanism by simulating a small spatial region close to the injection with a very fine grid. Then, analysing these results, an artificial anchoring mechanism is developed to be used in simulations of the whole flame with a coarse grid. Unsteady characteristics are shown and some averaged radial profiles for temperature and species are compared with experimental data

    Downside: The perpetrator of violence in the representations of social and health professionals

    Get PDF
    Gender-based violence is a widespread phenomenon and pandemic that affects women’s lives. Many interventions have been activated for perpetrators, but the dropout rate is still high. In order to draw up guidelines for responsibly and sustainably dealing with the phenomenon, this study is aimed at investigating the professionals’ perception of the perpetrator as a useful element in designing innovative intervention policies. Open interviews were carried out with welfare and health professionals and the Grounded Theory Methodology was used to analyze the collected data. These results detect attitudes of social health personnel and their feelings of impotence towards gender-based perpetrators because of the emergence of an inevitable repetitiveness of the violent behavior, as well as the “normality of violence” in a patriarchal culture and its “transversality”. This reflective knowledge allows for the opportunity to develop best transformative attitudes toward the phenomenon. According to the results, it is urgent to establish an active and convinced alliance with the healthy part of the man, through specific prevention paths, in order to activate an authentic motivation for change and its sustainability
    • 

    corecore