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Abstract

A numerical technique for mesh refinement in the HeaRT (Heat Release and Transfer) numerical code is presented. In the CFD

framework, Large Eddy Simulation (LES) approach is gaining in importance as a tool for simulating turbulent combustion pro-

cesses, also if this approach has an high computational cost due to the complexity of the turbulent modeling and the high number of

grid points necessary to obtain a good numerical solution. In particular, when a numerical simulation of a big domain is performed

with a structured grid, the number of grid points can increase so much that the simulation becomes impossible: this problem can

be overcomed with a mesh refinement technique. Mesh refinement technique developed for HeaRT numerical code (a staggered

finite difference code) is based on an high order reconstruction of the variables at the grid interfaces by means of a least square

quasi-eno interpolation: numerical code is written in modern Fortran (2003 standard of newer) and is parallelized using domain

decomposition and message passing interface (MPI) standard.
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1. Introduction

Turbulent flow field is very common in energy production burners: some particular phenomena that occur in this

plants are heavily conditioned by interaction between turbulent structures and burner walls, injectors, or the flame

front.

In particular, to avoid combustion instabilities and blow out phenomena, swirlers and bluff bodies are widely used:

in this way oxidizer and fuel (or mixture) flows have all the three components of velocity vector different from zero; for

this reason is obvious that turbulence of the flow field has a fundamental role in energy production burners behaviour.

Usually in energy production burners, inlet flow (premiscelated or not) in combustion chamber has high velocity

and injectors have very little dimensions: so a numerical simulation based on DNS (Direct Numerical Simulation)
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approach is impossible; a numerical simulation based on RANS (Reynolds Averaged Navier-Stokes) approach is very

difficult to obtain because of the complexity to obtain a turbulence model suitable to the solution of such flow field

(thermal and chemical non equilibrium, with complex geometries).

So numerical simulation based on LES (Large Eddy Simulation) approach is growing in importance because when

a sufficient portion of the energy spectrum is resolved, is possible to obtain very good numerical results, also if

computational cost is anyway high (but no so high as in DNS approach), because grid cell dimension is necessarily

little to obtain a good solution of significant turbulent scales.

Modern energy production burners have usually big dimensions and a cylindrical shape, with multi-phase flow:

also if a LES numerical simulation for such burners is the ideal choice, there are some problems to obtain a good

numerical result: in particular, is necessary a large number of grid points to guarantee sufficient resolution to solve

little turbulent scales next to the little injectors; multi-phase flow is another constraint on the dimension of grid cell,

because solid particles or droplets cannot be bigger than a single grid cell.

(a)

(b)

Fig. 1: Velocity Magnitude [m/s]

For example, in figure 1 are illustrated nu-

merical results of a LES simulation of a parti-

cle laden flow, based on Sommerfeld and Qiu

experiment: the injection system is composed

of a cylindrical duct and of an annular duct

coaxial to the first one. Air and glass parti-

cles (diameter between 20μm and 80μm) flow

through the cylindrical duct to the test cylin-

drical chamber, while from the annular duct a

swirled air flow is introduced in the test sec-

tion.

Also if the numerical solution globally has

a good agreement with experimental data, and

the presence of many small flow structures is

captured as the position of the stagnation point,

typical for swirled combustors, in proximity

of the test chamber inlet zone radial velocity

component and its RMS are not well predicted

(figure 2): this can be dued to the poor resolu-

tion adopted in front of the bluff body separat-

ing the inner and the outer duct; in fact, since

Δz = 3mm, only 3 grid points are present be-

fore the plane where the measures are taken

and therefore it will not be possible to recon-

struct smaller structures in that zone.

Total number of grid points for this numer-

ical simulation (more than 4 millions) makes

impossible to decrease Δz minimum and in-

crease resolution, also because of the use of structured grids.

So a mesh refinement technique is mandatory to obtain a good numerical solution (with a relatively low com-

putational cost) based on LES approach: numerical grid is divided in several structured grids with different spatial

resolution: next to fuel and oxidizer injectors, where turbulent scales have a very little characteristic dimension, grid

cells have very little dimensions, while in the outlet zone of the burner or the test section, where flow velocities and

flow turbulence are low, grid cells have bigger dimensions.

2. HeaRT Numerical Code

HeaRT (Heat Release and Turbulence) numerical code, developed by ENEA in collaboration with Mechanical and

Aerospace Engineering Department of Sapienza University of Rome, is an unsteady numerical solver for turbulent
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Fig. 2: Velocity Component [m/s] and RMS along r direction

reacting and non reacting flows, at low Mach number, in three-dimensional cartesian and cylindrical geometries,

discretized by the means of structured grids. Navier-Stokes equation are implemented in the compressible formulation,

in order to highlight wave propagation phenomena that are very important for combustion instability analysis.

Mathematical model is developed for a N-species reacting Newtonian flow; heat transfer is limited to the condution

and radiation contibutions, and to the enthalpic flow dued to chemical diffusion; the mass flow for a single chemical

specie is limited to the diffusion contribution, modelled by the means of Hirscfelder-Curtiss law.

Numerical code is written in modern Fortran 95 and is parallelized using domain decomposition and message

passing interface (MPI) standard.

2.1. Governing Equations for Gas Phase

Gas combustion is governed by a set of equation, written in differential form:

• Conservation of Mass

∂ρ

∂t
+∇ · (ρu) = 0 (1)

• Conservation of Linear Momentum

∂ρu
∂t

+∇ · (ρuu) = ∇ · S + ρ

Ns∑
i=1

Yifi (2)

• Conservation of Energy (Internal and Kinetic)

∂ρ (E+K)

∂t
+∇ · [ρu (E+K)] = ∇ · (Su) −∇ · q + ρ

Ns∑
i=1

Yifi · (u + Vi) (3)

• Conservation of Mass Fraction (for an ith-specie)

∂ρYi

∂t
+∇ · (ρuYi) = −∇ · Ji + ρωi (4)
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• Equation of State

p = ρ

Ns∑
i=1

Yi

Wi

RuT (5)

2.2. Governing Equations for Dispersed Phase

Governing equations for dispersed phase are obtained from the evolution of the probability density function (that

gives the number of particles that at time instant t are in the volume x + dx), with a velocity Vp within the range

cp + dcp, temperature ϑp within the range ζp + dζp and diameter δp within the range βp + dβp), described by the

Maxwell-Boltzmann equation:

∂fp

∂t
+

∂cp,jfp

∂xj
+

∂ċp,jfp

∂cp,j
+

∂β̇pfp

∂βp

+
∂ζ̇pfp

∂ζp
=

(
δfp

δt

)
coll

(6)

After some maths, the following equations are obtained:

∂

∂t

∫
V

rUdV = −

∮
∂V

rF · n̂dS+

∮
∂V

rG · n̂dS+

∫
V

HdV (7)

where dV = drdzdϑ and

U =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

np

αpρp

αpρpup,r

αpρpup,ϑ

αpρpup,z

αpρpHp

αpρpδθp

⎫⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎭

P =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

0

0

P

P

P

0

δQj

⎫⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎭

Fij =
(
Uiup,j − Pi

)
ej (8)

P = αpρp

[
−

2

3
τpδθp +

τp

3

(
∂δθp

∂t
+up,r

δθp

∂r
+

up,ϑ

r

∂δθp

∂ϑ
+up,z

∂δθp

∂z

)]
(9)

δQ =

[
5

3
τpδθp∇ (αpρpδθp) −

5

6
τp (δθp)

2 ∇ (αpρp) +
5

6
τpαpρpδθp

(
Dup

Dt
− a

)]
(10)

Ep =
1

2

[
∇u + (∇u)T

]
(11)

Gij =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

0

0

αpρp
τpδθp

3 Erjej
αpρp

τpδθp

3 Eϑjej
αpρp

τpδθp

3 Ezjej
0

0

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎭

(12)

H =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0

0

αpρp

[
u2

p,ϑ − 2
3τpδθp

(
∂up,ϑ

∂ϑ +up,r

)
+ r

(
uf,r−up,r

τp
+ gr

)]
αpρp

[
−up,ϑup,r −

τp
3 δθp

(
∂up,ϑ

∂r + 1
r

∂up,r

∂ϑ −
up,ϑ

r

)
+ r

(
uf,ϑ−up,ϑ

τp
+ gϑ

)]
αpρp

[
+r

(
uf,z−up,z

τp
+ gz

)]
0

−
2rαpρp

τp
δθp +Φp

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(13)

er = ir eϑ =
iϑ
r

ez = iz (14)

with ij is the unity module vector in the jth direction.

2.3. Numerical Model
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ij

k

ρUz(i, j, k)

ρUϑ(i, j, k)

ρUr(i, j, k)

ρ,p,T,Utot(i, j, k)

Fig. 3: Variable Position in a Cell

Governing equations are solved, in HeaRT numerical code,

with a second order centered staggered numerical scheme:

scalars (density, temperature, pressure, total energy, kinetic tur-

bulent energy and mass fractions) are set in the cell center, while

the three mass fluxes are set in the positive faces of the cell (see

figure 3).

Viscous stresses are set in the cell center and in the edges.

This discretization technique leads to a bigger precision and

a better discretization of equation 1, that doesn’t need any in-

terpolation. Because of this particular variables location, in a

cylindrical geometry the axis is treated as a boundary condition

and variable values are calculated by the means of a linear ex-

trapolation from neighboring nodes.

Dispersed phase equations are numerically solved on the

same computational grid used for scalar variables, by means of

a finite volume technique (Godunov’s scheme) with an ENO type scheme for Riemann problem solution at the cell

interfaces.

ij

k

τrz(i, j, k)

τrϑ(i, j, k)

τzϑ(i, j, k)

τzz, τrr, τϑϑ,KSGS, Yi(s)(i, j, k)

Fig. 4: Viscous Stress Position in a Cell

For inlet and outlet boundary conditions, NSCBC (Navier-

Stokes Characteristic Boundary Conditions) is adopted: in this

way Navier-Stokes equation on the boundaries are solved with

in terms of acustical waves amplitude on the boundary itself;

derivatives orthogonal to the boundary are calculated by a first

order non-centered numerical scheme: this order change ensures

a global accuracy that is of the same order of the numerical

scheme adopted for the numerical integration of Navier-Stokes

equation in the internal flow field.

For wall boundary condition, eulerian wall, adiabatic wall,

viscous wall and fixed temperature wall are available.

Third order Shu-Osher numerical scheme is used in order to

advance the solution from time tn to time tn+1:

⎧⎪⎨
⎪⎩

un+1 = un + h

s∑
i=1

bik
n
i n = 0, ..,N− 1

u0 = u(t0)

(15)

where

h = tn+1 − tn

kni = F

⎛
⎝tn + cih, un + h

i−1∑
j=1

aijk
n
j

⎞
⎠ i = 1, .., s

c1 = 0

0∑
j=1

· · · = 0

ant the coefficient are set to:

c2 = c3 = 0

b1 = b2 = 1
6
, b3 = 2

3

a21 = 1, a31 = a32 = 1
4

.
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Fig. 5: Time Evolution Algorithm

3. Mesh Refinement

3.1. Multi-Level Approach

Mesh refinement technique developed for HeaRT code was first based on a multi-level approach: a coarse grid is

collocated on the entire domain, while in suitable zones (where gradients are bigger) finest level are a-priori generated;

mesh refinement has constant ratio=2 for every direction, so a three dimensional coarse cell contains 8 fine cells. Grid

levels are properly nested: fine edge grid points have to be included in the coarse grid level, except for boundary

condition edges.

In such approach, different grid levels communicate by means of two different operators: restriction and prolonga-

tion. First is suitable for communication between fine grid internal points and corresponding coarse points while the

latter is used for communication from coarse points to the corresponding fine ghost cells.

Solution algorithm is represented in figure 5: is clear that communications between different grid levels have a

fundamental role; with communication at preset intervals, grids are tied each other and the numerical solutions on the

different levels are all coherent. For a turbulent flow field, for example, finest grid locates and identifies little vortices

and transfers numerical solution to the overlapped coarse grid, that therefore can take into account to the mixing

phenomena.

Restriction is implemented by the mean of a sum (weighted by the fine cell volume fraction contained in the

corresponding coarse cell, equation 16) over all fine cells contained in the control volume of the coarse variable: due

to the staggered formulation adopted in HeaRT code, control volume for scalar variables corresponds to the volume

of the grid cell, while for mass fluxes control volume is shared between two neighboring grid cells.

ΦC =

∑n
i=1 φfiVfi∑n

i=1 Vfi

(16)

Prolongation is implemented by the mean of bilinear or trilinear interpolations: first for fine mass fluxes that are

collocated on the same interface of the corresponding coarse mass fluxes, latter for scalars and for fine mass fluxes

collocated within the corresponding coarse cell.

3.1.1. Numerical Tests
In order to validate mesh refinement technique early described, numerical simulation of Rankine Vortex on a

cylindrical numerical grid is been performed, with two grid levels: the coarse one covers the entire flow field, while
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(a) (b) (c)

Fig. 6: Pressure, Tangential and Radial Velocities Flow Fields

the fine one contains the vortex. Numerical results are good, and the presence of a fine grid on vortex boundaries,

where gradients are bigger, avoids birth of spurious oscillations (figure 6).

The next step was the simulation of Sommerfeld and Qiu experiment with mesh refinement technique: the com-

putational grid is refined in proximity of the inlet of the test chamber, where the bluff body take place; unfortunately,

numerical results aren’t good and in the gas phase flow field, after some iterations, spurious pressure oscillations born

on the finest level (3) and propagate to the coarsest levels (2 and 1), as can be seen in figure 5.

This behaviour has led to a deeper analysis of the multi-resolution technique and its algorithm implemented in the

HeaRT code: in particular, multi-level approach has been abandoned and a new approach, based on joined grids, has

been adopted.

3.2. Joined Grids Approach

In the joined-grids approach, numerical grids with different spatial resolution are not overlapped but joined each

other: a coarse grid isn’t present on the entire computational domain. So the communication between different

resolution grids take place only on the ghost cells that are necessary for numerical integration of cell next to grid

boundaries.

Anyway is always possible to recognize two different operators for communication from fine to coarse grid and

from coarse to fine grid: first is obtained by meant of an accurate and conservative interpolation: fine values are

obtained by a Taylor series expansion, where the first and second order derivatives arise from the solution of a system

of equations via Least Square method. The choice of interpolation domain isn’t simple, because of the staggered

formulation adopted: for some fine cell, interpolator is composed only from coarse points that surround simmetrically

the coarse centroid of interpolation; in other cases the interpolator is made up by coarse and fine points and the domain

is not symmetrical with respect to the coarse centroid.

For communication from fine to coarse grid, the same restriction operator of multi-level approach is used.

This technique is under accurate validation: after some basic monodimensional and bidimensional simple tests,

Sommerfeld and Qiu experiment will be simulated again.
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(c) (d)
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Fig. 7: Pressure and Velocity Magnitude Along z Direction
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(g) (h)

(i) (j)

(k) (l)

Fig. 6: Pressure and Velocity Magnitude Along z Direction
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Fig. 5: Pressure and Velocity Magnitude Along z Direction


