654 research outputs found

    Thermoelectric Behaviour Near Magnetic Quantum Critical Point

    Full text link
    We use the coupled 2d-spin-3d-fermion model proposed by Rosch {\sl et. al.} (Phys. Rev. Lett. {\bf 79}, 159 (1997)) to study the thermoelectric behaviour of a heavy fermion compound when it is close to an antiferromagnetic quantum critical point. When the low energy spin fluctuations are quasi two dimensional, as has been observed in YbRh2Si2{\rm YbRh}_2{\rm Si}_2 and CeCu6−xAux {\rm CeCu}_{6-x}{\rm Au}_x , with a typical 2d ordering wavevector and 3d Fermi surface, the ``hot'' regions on the Fermi surface have a finite area. Due to enhanced scattering with the nearly critical spin fluctuations, the electrons in the hot region are strongly renormalized. We argue that there is an intermediate energy scale where the qualitative aspects of the renormalized hot electrons are captured by a weak-coupling perturbative calculation. Our examination of the electron self energy shows that the entropy carried by the hot electrons is larger than usual. This accounts for the anomalous logarithmic temperature dependence of specific heat observed in these materials. We show that the same mechanism produces logarithmic temperature dependence in thermopower. This has been observed in CeCu6−xAux {\rm CeCu}_{6-x}{\rm Au}_x . We expect to see the same behaviour from future experiments on YbRh2Si2{\rm YbRh}_2{\rm Si}_2.Comment: RevTex, two-column, 7 pages, 2 figure

    Scaling approach to itinerant quantum critical points

    Full text link
    Based on phase space arguments, we develop a simple approach to metallic quantum critical points, designed to study the problem without integrating the fermions out of the partition function. The method is applied to the spin-fermion model of a T=0 ferromagnetic transition. Stability criteria for the conduction and the spin fluids are derived by scaling at the tree level. We conclude that anomalous exponents may be generated for the fermion self-energy and the spin-spin correlation functions below d=3d=3, in spite of the spin fluid being above its upper critical dimension.Comment: 3 pages, 2 figures; discussion of the phase space restriction modified and, for illustrative purposes, restricted to the tree-level analysis of the ferromagnetic transitio

    Some remarks about pseudo gap behavior of nearly antiferromagnetic metals

    Full text link
    In the antiferromagnetically ordered phase of a metal, gaps open on parts of the Fermi surface if the Fermi volume is sufficiently large. We discuss simple qualitative and heuristic arguments under what conditions precursor effects, i.e. pseudo gaps, are expected in the paramagnetic phase of a metal close to an antiferromagnetic quantum phase transition. At least for weak interactions, we do not expect the formation of pseudo gaps in a three dimensional material. According to our arguments, the upper critical dimension d_c for the formation of pseudo gaps is d_c=2. However, at the present stage we cannot rule out a higher upper critical dimension, 2 < d_c <= 3. We also discuss briefly the role of statistical interactions in pseudo gap phases.Comment: 6 pages, accepted in PRB, relevant references added, several small change

    Locally critical quantum phase transitions in strongly correlated metals

    Full text link
    When a metal undergoes a continuous quantum phase transition, non-Fermi liquid behaviour arises near the critical point. It is standard to assume that all low-energy degrees of freedom induced by quantum criticality are spatially extended, corresponding to long-wavelength fluctuations of the order parameter. However, this picture has been contradicted by recent experiments on a prototype system: heavy fermion metals at a zero-temperature magnetic transition. In particular, neutron scattering from CeCu6−x_{6-x}Aux_x has revealed anomalous dynamics at atomic length scales, leading to much debate as to the fate of the local moments in the quantum-critical regime. Here we report our theoretical finding of a locally critical quantum phase transition in a model of heavy fermions. The dynamics at the critical point are in agreement with experiment. We also argue that local criticality is a phenomenon of general relevance to strongly correlated metals, including doped Mott insulators.Comment: 20 pages, 3 figures; extended version, to appear in Natur

    Calculating the energy spectra of magnetic molecules: application of real- and spin-space symmetries

    Full text link
    The determination of the energy spectra of small spin systems as for instance given by magnetic molecules is a demanding numerical problem. In this work we review numerical approaches to diagonalize the Heisenberg Hamiltonian that employ symmetries; in particular we focus on the spin-rotational symmetry SU(2) in combination with point-group symmetries. With these methods one is able to block-diagonalize the Hamiltonian and thus to treat spin systems of unprecedented size. In addition it provides a spectroscopic labeling by irreducible representations that is helpful when interpreting transitions induced by Electron Paramagnetic Resonance (EPR), Nuclear Magnetic Resonance (NMR) or Inelastic Neutron Scattering (INS). It is our aim to provide the reader with detailed knowledge on how to set up such a diagonalization scheme.Comment: 29 pages, many figure

    Strongly coupled quantum criticality with a Fermi surface in two dimensions: fractionalization of spin and charge collective modes

    Full text link
    We describe two dimensional models with a metallic Fermi surface which display quantum phase transitions controlled by strongly interacting critical field theories below their upper critical dimension. The primary examples involve transitions with a topological order parameter associated with dislocations in collinear spin density wave ("stripe") correlations: the gapping of the order parameter fluctuations leads to a fractionalization of spin and charge collective modes, and this transition has been proposed as a candidate for the cuprates near optimal doping. The coupling between the order parameter and long-wavelength volume and shape deformations of the Fermi surface is analyzed by the renormalization group, and a runaway flow to a non-perturbative regime is found in most cases. A phenomenological scaling analysis of simple observable properties of possible second order quantum critical points is presented, with results quite similar to those near quantum spin glass transitions and to phenomenological forms proposed by Schroeder et al. (cond-mat/0011002).Comment: 16 pages, 4 figures; (v2) additional clarifying remark

    Quantum Criticality in Heavy Fermion Metals

    Full text link
    Quantum criticality describes the collective fluctuations of matter undergoing a second-order phase transition at zero temperature. Heavy fermion metals have in recent years emerged as prototypical systems to study quantum critical points. There have been considerable efforts, both experimental and theoretical, which use these magnetic systems to address problems that are central to the broad understanding of strongly correlated quantum matter. Here, we summarize some of the basic issues, including i) the extent to which the quantum criticality in heavy fermion metals goes beyond the standard theory of order-parameter fluctuations, ii) the nature of the Kondo effect in the quantum critical regime, iii) the non-Fermi liquid phenomena that accompany quantum criticality, and iv) the interplay between quantum criticality and unconventional superconductivity.Comment: (v2) 39 pages, 8 figures; shortened per the editorial mandate; to appear in Nature Physics. (v1) 43 pages, 8 figures; Non-technical review article, intended for general readers; the discussion part contains more specialized topic

    Search for the Flavor-Changing Neutral Current Decay D0→Ό+Ό−D^0 \to \mu^+\mu^- with the HERA-B Detector

    Get PDF
    We report on a search for the flavor-changing neutral current decay D0→Ό+Ό−D^0 \to \mu^+\mu^- using 50×10650 \times 10^6 events recorded with a dimuon trigger in interactions of 920 GeV protons with nuclei by the HERA-B experiment. We find no evidence for such decays and set a 90% confidence level upper limit on the branching fraction Br(D0→Ό+Ό−)<2.0×10−6Br(D^0 \to \mu^+\mu^-) <2.0 \times 10^{-6}.Comment: 17 pages, 4 figures (of which 1 double), paper to be submitted to Physics Letters

    Measurement of the J/Psi Production Cross Section in 920 GeV/c Fixed-Target Proton-Nucleus Interactions

    Get PDF
    The mid-rapidity (dsigma_(pN)/dy at y=0) and total sigma_(pN) production cross sections of J/Psi mesons are measured in proton-nucleus interactions. Data collected by the HERA-B experiment in interactions of 920 GeV/c protons with carbon, titanium and tungsten targets are used for this analysis. The J/Psi mesons are reconstructed by their decay into lepton pairs. The total production cross section obtained is sigma_(pN)(J/Psi) = 663 +- 74 +- 46 nb/nucleon. In addition, our result is compared with previous measurements
    • 

    corecore