19 research outputs found

    Orangutan information broadcast via consonant-like and vowel-like calls breaches mathematical models of linguistic evolution

    Get PDF
    The origin of language is one of the most significant evolutionary milestones of life on Earth, but one of the most persevering scientific unknowns. Two decades ago, game theorists and mathematicians predicted that the first words and grammar emerged as a response to transmission errors and information loss in language’s precursor system, however, empirical proof is lacking. Here, we assessed information loss in proto-consonants and proto-vowels in human pre-linguistic ancestors as proxied by orangutan consonant-like and vowel-like calls that compose syllable-like combinations. We played-back and re-recorded calls at increasing distances across a structurally complex habitat (i.e. adverse to sound transmission). Consonant-like and vowel-like calls degraded acoustically over distance, but no information loss was detected regarding three distinct classes of information (viz. individual ID, context and population ID). Our results refute prevailing mathematical predictions and herald a turning point in language evolution theory and heuristics. Namely, explaining how the vocal-verbal continuum was crossed in the hominid family will benefit from future mathematical and computational models that, in order to enjoy empirical validity and superior explanatory power, will be informed by great ape behavior and repertoire

    Sociality predicts orangutan vocal phenotype

    Get PDF
    In humans, individuals’ social setting determines which and how language is acquired. Social seclusion experiments show that sociality also guides vocal development in songbirds and marmoset monkeys, but absence of similar great ape data has been interpreted as support to saltational notions for language origin, even if such laboratorial protocols are unethical with great apes. Here we characterize the repertoire entropy of orangutan individuals and show that in the wild, different degrees of sociality across populations are associated with different ‘vocal personalities’ in the form of distinct regimes of alarm call variants. In high-density populations, individuals are vocally more original and acoustically unpredictable but new call variants are short lived, whereas individuals in low-density populations are more conformative and acoustically consistent but also exhibit more complex call repertoires. Findings provide non-invasive evidence that sociality predicts vocal phenotype in a wild great ape. They prove false hypotheses that discredit great apes as having hardwired vocal development programmes and non-plastic vocal behaviour. Social settings mould vocal output in hominids besides humans

    Volitional exaggeration of body size through fundamental and formant frequency modulation in humans

    Get PDF
    Several mammalian species scale their voice fundamental frequency (F0) and formant frequencies in competitive and mating contexts, reducing vocal tract and laryngeal allometry thereby exaggerating apparent body size. Although humans’ rare capacity to volitionally modulate these same frequencies is thought to subserve articulated speech, the potential function of voice frequency modulation in human nonverbal communication remains largely unexplored. Here, the voices of 167 men and women from Canada, Cuba, and Poland were recorded in a baseline condition and while volitionally imitating a physically small and large body size. Modulation of F0, formant spacing (∆F), and apparent vocal tract length (VTL) were measured using Praat. Our results indicate that men and women spontaneously and systemically increased VTL and decreased F0 to imitate a large body size, and reduced VTL and increased F0 to imitate small size. These voice modulations did not differ substantially across cultures, indicating potentially universal sound-size correspondences or anatomical and biomechanical constraints on voice modulation. In each culture, men generally modulated their voices (particularly formants) more than did women. This latter finding could help to explain sexual dimorphism in F0 and formants that is currently unaccounted for by sexual dimorphism in human vocal anatomy and body size

    Call Cultures in Orang-Utans?

    Get PDF
    BACKGROUND: Several studies suggested great ape cultures, arguing that human cumulative culture presumably evolved from such a foundation. These focused on conspicuous behaviours, and showed rich geographic variation, which could not be attributed to known ecological or genetic differences. Although geographic variation within call types (accents) has previously been reported for orang-utans and other primate species, we examine geographic variation in the presence/absence of discrete call types (dialects). Because orang-utans have been shown to have geographic variation that is not completely explicable by genetic or ecological factors we hypothesized that this will be similar in the call domain and predict that discrete call type variation between populations will be found. METHODOLOGY/PRINCIPAL FINDINGS: We examined long-term behavioural data from five orang-utan populations and collected fecal samples for genetic analyses. We show that there is geographic variation in the presence of discrete types of calls. In exactly the same behavioural context (nest building and infant retrieval), individuals in different wild populations customarily emit either qualitatively different calls or calls in some but not in others. By comparing patterns in call-type and genetic similarity, we suggest that the observed variation is not likely to be explained by genetic or ecological differences. CONCLUSION/SIGNIFICANCE: These results are consistent with the potential presence of 'call cultures' and suggest that wild orang-utans possess the ability to invent arbitrary calls, which spread through social learning. These findings differ substantially from those that have been reported for primates before. First, the results reported here are on dialect and not on accent. Second, this study presents cases of production learning whereas most primate studies on vocal learning were cases of contextual learning. We conclude with speculating on how these findings might assist in bridging the gap between vocal communication in non-human primates and human speech

    Chimpanzee lip-smacking facilitates cooperative behaviour

    Get PDF
    Signalling plays an important role in facilitating and maintaining affiliative or cooperative interactions in social animals. Social grooming in primates is an example of an interaction that requires coordination between partners but little is known about communicative behaviours facilitating this activity. In this study, we analysed the communication of wild chimpanzees of Budongo Forest, Uganda, as they entered and maintained a naturally occurring cooperative interaction: social grooming. We found that lip-smacking, a distinct multimodal oral gesture produced during grooming, coordinated this activity. Lip-smacking at the beginning of grooming bouts was significantly more often followed by longer and reciprocated bouts than silent grooming initiations. Lip-smacks were more likely to be produced when the risk of termination of the interaction by the recipient was high, for instance when grooming vulnerable body parts. Groomers were also more likely to produce lip-smacks during face-to-face grooming where the visual aspect of the signal could be perceived. Data are consistent with the hypothesis that chimpanzee lip-smacks function to coordinate and prolong social grooming, suggesting that this oral signal is an example of a communicative behaviour facilitating cooperative behaviour in chimpanzees

    Intentional communication between wild bonnet macaques and humans

    Get PDF
    Comparative studies of nonhuman communication systems could provide insights into the origins and evolution of a distinct dimension of human language: intentionality. Recent studies have provided evidence for intentional communication in diferent species but generally in captive settings. We report here a novel behaviour of food requesting from humans displayed by wild bonnet macaques Macaca radiata, an Old World cercopithecine primate, in the Bandipur National Park of southern India. Using both natural observations and feld experiments, we examined four diferent behavioural components— coo-calls, hand-extension gesture, orientation, and monitoring behaviour—of food requesting for their conformity with the established criteria of intentional communication. Our results suggest that food requesting by bonnet macaques is potentially an intentionally produced behavioural strategy as all the food requesting behaviours except coo-calls qualify the criteria for intentionality. We comment on plausible hypotheses for the origin and spread of this novel behavioural strategy in the study macaque population and speculate that the cognitive precursors for language production may be manifest in the usage of combination of signals of diferent modalities in communication, which could have emerged in simians earlier than in the anthropoid ape

    Shannon entropy as a robust estimator of Zipf's Law in animal vocal communication repertoires

    Get PDF
    Information complexity in animals is an indicator of advanced communication and an intricate socio-ecology. Zipf's Law of least effort has been used to assess the potential information content of animal repertoires, including whether or not a particular animal communication could be ‘language-like’. As all human languages follow Zipf's law, with a power law coefficient (PLC) close to −1, animal signals with similar probability distributions are postulated to possess similar information characteristics to language. However, estimation of the PLC from limited empirical datasets (e.g. most animal communication studies) is problematic because of biases from small sample sizes. The traditional approach to estimating Zipf's law PLC is to find the slope of a log–log rank-frequency plot. Our alternative option uses the underlying equivalence between Shannon entropy (i.e. whether successive elements of a sequence are unpredictable, or repetitive) and PLC. Here, we test whether an entropy approach yields more robust estimates of Zipf's law PLC than the traditional approach. We examined the efficacy of the entropy approach in two ways. First, we estimated the PLC from synthetic datasets generated with a priori known power law probability distributions. This revealed that the estimated PLC using the traditional method is particularly inaccurate for highly stereotyped sequences, even at modest repertoire sizes. Estimation via Shannon entropy is accurate with modest sample sizes even for repertoires with thousands of distinct elements. Second, we applied these approaches to empirical data taken from 11 animal species. Shannon entropy produced a more robust estimate of PLC with lower variance than the traditional method, even when the true PLC is unknown. Our approach for the first time reveals Zipf's law operating in the vocal systems of multiple lineages: songbirds, hyraxes and cetaceans. As different methods of estimating the PLC can lead to misleading results in real data, estimating the balance of a communication system between simplicity and complexity is best performed using the entropy approach. This provides a more robust way to investigate the evolutionary constraints and processes that have acted on animal communication systems, and the parallels between these processes and the evolution of language
    corecore