236 research outputs found

    The acute effects of cannabidiol on emotional processing and anxiety: a neurocognitive imaging study

    Get PDF
    Rationale: There is growing interest in the therapeutic potential of cannabidiol (CBD) across a range of psychiatric disorders. CBD has been found to reduce anxiety during experimentally induced stress in anxious individuals and healthy controls. However, the mechanisms underlying the putative anxiolytic effects of CBD are unknown. // Objectives: We sought to investigate the behavioural and neural effects of a single dose of CBD vs. placebo on a range of emotion-related measures to test cognitive-mechanistic models of its effects on anxiety. // Methods: We conducted a randomised, double-blind, placebo-controlled, crossover, acute oral challenge of 600 mg of CBD in 24 healthy participants on emotional processing, with neuroimaging (viewing emotional faces during functional magnetic resonance imaging) and cognitive (emotional appraisal) measures as well as subjective response to experimentally induced anxiety. // Results: CBD did not produce effects on brain responses to emotional faces and cognitive measures of emotional processing, or modulate experimentally induced anxiety, relative to placebo. // Conclusions: Given the rising popularity of CBD for its putative medical benefits, these findings question whether further research is warranted to investigate the clinical potential of CBD for the treatment of anxiety disorders

    Hybrid endoscopic thymectomy : combined transesophageal and transthoracic approach in a survival porcine model with cadaver assessment

    Get PDF
    BACKGROUND: Video-assisted thoracoscopic surgery thymectomy has been used in the treatment of Myastenia Gravis and thymomas (coexisting or not). In natural orifice transluminal endoscopic surgery, new approaches to the thorax are emerging as alternatives to the classic transthoracic endoscopic surgery. The aim of this study was to assess the feasibility and reliability of hybrid endoscopic thymectomy (HET) using a combined transthoracic and transesophageal approach. METHODS: Twelve consecutive in vivo experiments were undertaken in the porcine model (4 acute and 8 survival). The same procedure was assessed in a human cadaver afterward. For HET, an 11-mm trocar was inserted in the 2nd intercostal space in the left anterior axillary line. A 0° 10-mm thoracoscope with a 5-mm working channel was introduced. Transesophageal access was created through a submucosal tunnel using a flexible gastroscope with a single working channel introduced through the mouth. Using both flexible (gastroscope) and rigid (thoracoscope) instruments, the mediastinum was opened; the thymus was dissected, and the vessels were ligated using electrocautery alone. RESULTS: Submucosal tunnel creation and esophagotomy were performed safely without incidents in all animals. Complete thymectomy was achieved in all experiments. All animals in the survival group lived for 14 days. Thoracoscopic and postmortem examination revealed pleural adhesions on site of the surgical procedure with no signs of infection. Histological analysis of the proximal third of the esophagus revealed complete cicatrization of both mucosal defect and myotomy site. In the human cadaver, we were able to replicate all the procedure even though we were not able to identify the thymus. CONCLUSIONS: Hybrid endoscopic thymectomy is feasible and reliable. HET could be regarded as a possible alternative to classic thoracoscopic approach for patients requiring thymectomy.This project was funded by the FCT Grants project PTDC/SAU-OSM/105578/2008

    Large-Scale Bi-Level Strain Design Approaches and Mixed-Integer Programming Solution Techniques

    Get PDF
    The use of computational models in metabolic engineering has been increasing as more genome-scale metabolic models and computational approaches become available. Various computational approaches have been developed to predict how genetic perturbations affect metabolic behavior at a systems level, and have been successfully used to engineer microbial strains with improved primary or secondary metabolite production. However, identification of metabolic engineering strategies involving a large number of perturbations is currently limited by computational resources due to the size of genome-scale models and the combinatorial nature of the problem. In this study, we present (i) two new bi-level strain design approaches using mixed-integer programming (MIP), and (ii) general solution techniques that improve the performance of MIP-based bi-level approaches. The first approach (SimOptStrain) simultaneously considers gene deletion and non-native reaction addition, while the second approach (BiMOMA) uses minimization of metabolic adjustment to predict knockout behavior in a MIP-based bi-level problem for the first time. Our general MIP solution techniques significantly reduced the CPU times needed to find optimal strategies when applied to an existing strain design approach (OptORF) (e.g., from ∼10 days to ∼5 minutes for metabolic engineering strategies with 4 gene deletions), and identified strategies for producing compounds where previous studies could not (e.g., malate and serine). Additionally, we found novel strategies using SimOptStrain with higher predicted production levels (for succinate and glycerol) than could have been found using an existing approach that considers network additions and deletions in sequential steps rather than simultaneously. Finally, using BiMOMA we found novel strategies involving large numbers of modifications (for pyruvate and glutamate), which sequential search and genetic algorithms were unable to find. The approaches and solution techniques developed here will facilitate the strain design process and extend the scope of its application to metabolic engineering

    Social impacts as a function of place change

    Get PDF
    This paper argues that both impacts felt by and attitudes to tourism are a function of place change. Destinations are comprised of three types of place: tourism, non-tourism and shared. It is believed attitudes are generally positive when stasis exists among the three types, but deteriorate during periods of rapid place change. Likewise, impacts are felt when place changes, especially when non-tourism place is transformed into either shared or tourism place. This proposition is tested through a meta-analysis of more than 90 journal articles examining social impacts of tourism. Nine types of place change were identified as well as a relationship between place change and lifecycle stage

    BRIT1/MCPH1 links chromatin remodelling to DNA damage response

    Get PDF
    To detect and repair damaged DNA, DNA damage response proteins need to overcome the barrier of condensed chromatin to gain access to DNA lesions1. ATP-dependent chromatin remodeling is one of the fundamental mechanisms used by cells to relax chromatin in DNA repair2–3. However, the mechanism mediating their recruitment to DNA lesions remains largely unknown. BRIT1 (also known as MCPH1) is an early DNA damage response protein that is mutated in human primary microcephaly4–8. We report here a previously unknown function of BRIT1 as a regulator of ATP-dependent chromatin remodeling complex SWI/SNF in DNA repair. Upon DNA damage, BRIT1 increases its interaction with SWI/SNF through the ATM/ATR-dependent phosphorylation on the BAF170 subunit. This increase of binding affinity provides a means by which SWI/SNF can be specifically recruited to and maintained at DNA lesions. Loss of BRIT1 causes impaired chromatin relaxation owing to reduced association of SWI/SNF with chromatin. This explains the decreased recruitment of repair proteins to DNA lesions and reduced efficiency of repair in BRIT1-deficient cells, resulting in impaired survival from DNA damage. Our findings, therefore, identify BRIT1 as a key molecule that links chromatin remodeling with DNA damage response in the control of DNA repair, and its dysfunction contributes to human disease

    Elevated creatine kinase activity in primary hepatocellular carcinoma

    Get PDF
    BACKGROUND: Inconsistent findings have been reported on the occurrence and relevance of creatine kinase (CK) isoenzymes in mammalian liver cells. Part of this confusion might be due to induction of CK expression during metabolic and energetic stress. METHODS: The specific activities and isoenzyme patterns of CK and adenylate kinase (AdK) were analysed in pathological liver tissue of patients undergoing orthotopic liver transplantation. RESULTS: The brain-type, cytosolic BB-CK isoenzyme was detected in all liver specimens analysed. Conversely, CK activity was strongly increased and a mitochondrial CK (Mi-CK) isoenzyme was detected only in tissue samples of two primary hepatocellular carcinomas (HCCs). CONCLUSION: The findings do not support significant expression of CK in normal liver and most liver pathologies. Instead, many of the previous misconceptions in this field can be explained by interference from AdK isoenzymes. Moreover, the data suggest a possible interplay between p53 mutations, HCC, CK expression, and the growth-inhibitory effects of cyclocreatine in HCC. These results, if confirmed, could provide important hints at improved therapies and cures for HCC

    The HASHTAG Project: The First Submillimeter Images of the Andromeda Galaxy from the Ground

    Get PDF
    Observing nearby galaxies with submillimeter telescopes on the ground has two major challenges. First, the brightness is significantly reduced at long submillimeter wavelengths compared to the brightness at the peak of the dust emission. Second, it is necessary to use a high-pass spatial filter to remove atmospheric noise on large angular scales, which has the unwelcome side effect of also removing the galaxy's large-scale structure. We have developed a technique for producing high-resolution submillimeter images of galaxies of large angular size by using the telescope on the ground to determine the small-scale structure (the large Fourier components) and a space telescope (Herschel or Planck) to determine the large-scale structure (the small Fourier components). Using this technique, we are carrying out the HARP and SCUBA-2 High Resolution Terahertz Andromeda Galaxy Survey (HASHTAG), an international Large Program on the James Clerk Maxwell Telescope, with one aim being to produce the first high-fidelity high-resolution submillimeter images of Andromeda. In this paper, we describe the survey, the method we have developed for combining the space-based and ground-based data, and we present the first HASHTAG images of Andromeda at 450 and 850 μm. We also have created a method to predict the CO(J = 3–2) line flux across M31, which contaminates the 850 μm band. We find that while normally the contamination is below our sensitivity limit, it can be significant (up to 28%) in a few of the brightest regions of the 10 kpc ring. We therefore also provide images with the predicted line emission removed

    The inference of gray whale (Eschrichtius robustus) historical population attributes from whole-genome sequences

    Get PDF
    Commercial whaling caused extensive demographic declines in many great whale species, including gray whales that were extirpated from the Atlantic Ocean and dramatically reduced in the Pacific Ocean. The Eastern Pacific gray whale has recovered since the 1982 ban on commercial whaling, but the Western Pacific gray whale-once considered possibly extinct-consists of only about 200 individuals and is considered critically endangered by some international authorities. Herein, we use whole-genome sequencing to investigate the demographic history of gray whales from the Pacific and use environmental niche modelling to make predictions about future gene flow.Our sequencing efforts and habitat niche modelling indicate that: i) western gray whale effective population sizes have declined since the last glacial maximum; ii) contemporary gray whale genomes, both eastern and western, harbor less autosomal nucleotide diversity than most other marine mammals and megafauna; iii) the extent of inbreeding, as measured by autozygosity, is greater in the Western Pacific than in the Eastern Pacific populations; and iv) future climate change is expected to open new migratory routes for gray whales.Our results indicate that gray whale genomes contain low nucleotide diversity and have been subject to both historical and recent inbreeding. Population sizes over the last million years likely peaked about 25,000 years before present and have declined since then. Our niche modelling suggests that novel migratory routes may develop within the next century and if so this could help retain overall genetic diversity, which is essential for adaption and successful recovery in light of global environmental change and past exploitation
    corecore