257 research outputs found
Disentangling the genetic overlap and causal relationships between primary open-angle glaucoma, brain morphology and four major neurodegenerative disorders
BACKGROUND: Primary open-angle glaucoma (POAG) is an optic neuropathy characterized by progressive degeneration of the optic nerve that leads to irreversible visual impairment. Multiple epidemiological studies suggest an association between POAG and major neurodegenerative disorders (Alzheimer's disease, amyotrophic lateral sclerosis, frontotemporal dementia, and Parkinson's disease). However, the nature of the overlap between neurodegenerative disorders, brain morphology and glaucoma remains inconclusive. METHOD: In this study, we performed a comprehensive assessment of the genetic and causal relationship between POAG and neurodegenerative disorders, leveraging genome-wide association data from studies of magnetic resonance imaging of the brain, POAG, and four major neurodegenerative disorders. FINDINGS: This study found a genetic overlap and causal relationship between POAG and its related phenotypes (i.e., intraocular pressure and optic nerve morphology traits) and brain morphology in 19 regions. We also identified 11 loci with a significant local genetic correlation and a high probability of sharing the same causal variant between neurodegenerative disorders and POAG or its related phenotypes. Of interest, a region on chromosome 17 corresponding to MAPT, a well-known risk locus for Alzheimer's and Parkinson's disease, was shared between POAG, optic nerve degeneration traits, and Alzheimer's and Parkinson's diseases. Despite these local genetic overlaps, we did not identify strong evidence of a causal association between these neurodegenerative disorders and glaucoma. INTERPRETATION: Our findings indicate a distinctive and likely independent neurodegenerative process for POAG involving several brain regions although several POAG or optic nerve degeneration risk loci are shared with neurodegenerative disorders, consistent with a pleiotropic effect rather than a causal relationship between these traits. FUNDING: PG was supported by an NHMRC Investigator Grant (#1173390), SM by an NHMRC Senior Research Fellowship and an NHMRC Program Grant (APP1150144), DM by an NHMRC Fellowship, LP is funded by the NEI EY015473 and EY032559 grants, SS is supported by an NIH-Oxford Cambridge Fellowship and NIH T32 grant (GM136577), APK is supported by a UK Research and Innovation Future Leaders Fellowship, an Alcon Research Institute Young Investigator Award and a Lister Institute for Preventive Medicine Award
Haplotype reference consortium panel: Practical implications of imputations with large reference panels
Recently, the Haplotype Reference Consortium (HRC) released a large imputation panel that allows more accurate imputation of genetic variants. In this study, we compared a set of directly assayed common and rare variants from an exome array to imputed genotypes, that is, 1000 genomes project (1000GP) and HRC. We showed that imputation using the HRC panel improved the concordance between assayed and imputed genotypes at common, and especially, low-frequency variants. Furthermore, we performed a genome-wide association meta-analysis of vertical cup-disc ratio, a highly heritable endophenotype of glaucoma, in four cohorts using 1000GP and HRC imputations. We compared the results of the meta-analysis using 1000GP to the meta-analysis results using HRC. Overall, we found that using HRC imputation significantly improved P values (PÂ =Â 3.07Â ĂÂ 10(-61) ), particularly for suggestive variants. Both meta-analyses were performed in the same sample size, yet we found eight genome-wide significant loci in the HRC-based meta-analysis versus seven genome-wide significant loci in the 1000GP-based meta-analysis. This study provides supporting evidence of the new avenues for gene discovery and fine mapping that the HRC imputation panel offers
The outer halo globular cluster system of M31 - III. Relationship to the stellar halo
We utilize the final catalogue from the Pan-Andromeda Archaeological Survey to investigate the links between the globular cluster system and field halo in M31 at projected radii R proj = 25-150 kpc. In this region the cluster radial density profile exhibits a power-law decline with index = â2.37 ± 0.17, matching that for the stellar halo component with [Fe/H] < â1.1. Spatial density maps reveal a striking correspondence between the most luminous substructures in the metal-poor field halo and the positions of many globular clusters. By comparing the density of metal-poor halo stars local to each cluster with the azimuthal distribution at commensurate radius, we reject the possibility of no correlation between clusters and field overdensities at 99.95 per cent significance. We use our stellar density measurements and previous kinematic data to demonstrate that â35-60 per cent of clusters exhibit properties consistent with having been accreted into the outskirts of M31 at late times with their parent dwarfs. Conversely, at least âŒ40 per cent of remote clusters show no evidence for a link with halo substructure. The radial density profile for this subgroup is featureless and closely mirrors that observed for the apparently smooth component of the metal-poor stellar halo. We speculate that these clusters are associated with the smooth halo; if so, their properties appear consistent with a scenario where the smooth halo was built up at early times via the destruction of primitive satellites. In this picture the entire M31 globular cluster system outside R proj = 25 kpc comprises objects accumulated from external galaxies over a Hubble time of growth
Development and evaluation of a real-time one step Reverse-Transcriptase PCR for quantitation of Chandipura Virus
<p>Abstract</p> <p>Background</p> <p>Chandipura virus (CHPV), a member of family <it>Rhabdoviridae </it>was attributed to an explosive outbreak of acute encephalitis in children in Andhra Pradesh, India in 2003 and a small outbreak among tribal children from Gujarat, Western India in 2004. The case-fatality rate ranged from 55â75%. Considering the rapid progression of the disease and high mortality, a highly sensitive method for quantifying CHPV RNA by real-time one step reverse transcriptase PCR (real-time one step RT-PCR) using TaqMan technology was developed for rapid diagnosis.</p> <p>Methods</p> <p>Primers and probe for P gene were designed and used to standardize real-time one step RT-PCR assay for CHPV RNA quantitation. Standard RNA was prepared by PCR amplification, TA cloning and run off transcription. The optimized real-time one step RT-PCR assay was compared with the diagnostic nested RT-PCR and different virus isolation systems [<it>in vivo </it>(mice) <it>in ovo </it>(eggs), <it>in vitro </it>(Vero E6, PS, RD and Sand fly cell line)] for the detection of CHPV. Sensitivity and specificity of real-time one step RT-PCR assay was evaluated with diagnostic nested RT-PCR, which is considered as a gold standard.</p> <p>Results</p> <p>Real-time one step RT-PCR was optimized using <it>in vitro </it>transcribed (IVT) RNA. Standard curve showed linear relationship for wide range of 10<sup>2</sup>-10<sup>10 </sup>(r<sup>2 </sup>= 0.99) with maximum Coefficient of variation (CV = 5.91%) for IVT RNA. The newly developed real-time RT-PCR was at par with nested RT-PCR in sensitivity and superior to cell lines and other living systems (embryonated eggs and infant mice) used for the isolation of the virus. Detection limit of real-time one step RT-PCR and nested RT-PCR was found to be 1.2 Ă 10<sup>0 </sup>PFU/ml. RD cells, sand fly cells, infant mice, and embryonated eggs showed almost equal sensitivity (1.2 Ă 10<sup>2 </sup>PFU/ml). Vero and PS cell-lines (1.2 Ă 10<sup>3 </sup>PFU/ml) were least sensitive to CHPV infection. Specificity of the assay was found to be 100% when RNA from other viruses or healthy individual was used.</p> <p>Conclusion</p> <p>On account of the high sensitivity, reproducibility and specificity, the assay can be used for the rapid detection and quantitation of CHPV RNA from clinical samples during epidemics and from endemic areas. The assay may also find application in screening of antiviral compounds, understanding of pathogenesis as well as evaluation of vaccine.</p
Physical activity monitoring in obese people in the real life environment
<p>Abstract</p> <p>Background</p> <p>Obesity is a major problem especially in western countries and several studies underline the importance of physical activity to enhance diet. Currently there is increasing interest in instruments for monitoring daily physical activity. The purpose of this pilot study was to appraise the qualitative and quantitative differences in physical activities and gait analysis parameters in control and obese subjects by means of an innovative tool for the monitoring of physical activity.</p> <p>Methods</p> <p>Twenty-six obese patients, 16 women and 10 men, aged 22 to 69 years with Body Mass Index (BMI) between 30 and 51.4 kg/m<sup>2</sup>, were compared with 15 control subjects, 4 men and 11 women, aged 24 to 69 with BMI between 18 and 25 kg/m<sup>2 </sup>during daily physical activities. The IDEEA device (Minisun, Fresno, CA), based on a wearable system of biaxial accelerometers and able to continuously record the physical activities and energy expenditure of a subject in time was used. Time spent in different physical activities such as standing, sitting, walking, lying, reclining, stepping, energy expenditure and gait parameters (velocity, stance duration, etc) were measured during a 24-hours period.</p> <p>Results</p> <p>A trend toward a reduced number of steps was present, associated to reduced speed, reduced cadence and reduced rate of single and double limb support (SLS/DLS). Moreover, obese people spent significant less time stepping, less time lying and more time in a sitting or reclined position during the night. The energy expenditure during a 24-hours period was higher in the obese compared to controls.</p> <p>Conclusions</p> <p>The study provided objective parameters to differentiate the daily motor activity of obese subjects with respect to controls, even a larger population is required to confirm these findings. The device used can be of support in programming educational activities for life style modification in obese people as well as for monitoring the results of various kinds of intervention in these patients concerning weight and physical performance.</p
Planet Populations as a Function of Stellar Properties
Exoplanets around different types of stars provide a window into the diverse
environments in which planets form. This chapter describes the observed
relations between exoplanet populations and stellar properties and how they
connect to planet formation in protoplanetary disks. Giant planets occur more
frequently around more metal-rich and more massive stars. These findings
support the core accretion theory of planet formation, in which the cores of
giant planets form more rapidly in more metal-rich and more massive
protoplanetary disks. Smaller planets, those with sizes roughly between Earth
and Neptune, exhibit different scaling relations with stellar properties. These
planets are found around stars with a wide range of metallicities and occur
more frequently around lower mass stars. This indicates that planet formation
takes place in a wide range of environments, yet it is not clear why planets
form more efficiently around low mass stars. Going forward, exoplanet surveys
targeting M dwarfs will characterize the exoplanet population around the lowest
mass stars. In combination with ongoing stellar characterization, this will
help us understand the formation of planets in a large range of environments.Comment: Accepted for Publication in the Handbook of Exoplanet
Genetic correlations between diabetes and glaucoma: an analysis of continuous and dichotomous phenotypes
Purpose: A genetic correlation is the proportion of phenotypic variance between traits that is shared on a genetic basis. Here we explore genetic correlations between diabetes- and glaucoma-related traits.Design: Cross-sectional study.Methods: We assembled genome-wide association study summary statistics from European-derived participants regarding diabetes-related traits like fasting blood sugar (FBS) and type 2 diabetes (T2D) and glaucoma-related traits (intraocular pressure (IOP), central corneal thickness (CCT), corneal hysteresis (CH), corneal resistance factor (CRF), cup-disc ratio (CDR), and primary open-angle glaucoma (POAG)). We included data from the National Eye Institute Glaucoma Human Genetics Collaboration Heritable Overall Operational Database, the UK Biobank and the International Glaucoma Genetics Consortium. We calculated genetic correlation (rg) between traits using linkage disequilibrium score regression. We also calculated genetic correlations between IOP, CCT and selected diabetes-related traits based on individual level phenotype data in two Northern European population-based samples using pedigree information and Sequential Oligogenic Linkage Analysis Routines (SOLAR).Results: Overall, there was little rg between diabetes- and glaucoma-related traits. Specifically, we found a non-significant negative correlation between T2D and POAG (rg=-0.14; p=0.16). Using SOLAR, the genetic correlations between measured IOP, CCT, FBS, fasting insulin and hemoglobin A1c, were null. In contrast, genetic correlations between IOP and POAG (rg â„0.45; pâ€3.0E-04) and between CDR and POAG were high (rg =0.57; p=2.8E-10). However, genetic correlations between corneal properties (CCT, CRF and CH) and POAG were low (rg range: -0.18 - 0.11) and non-significant (pâ„0.07).Conclusion: These analyses suggest there is limited genetic correlation between diabetes- and glaucoma-related traits
RAGE Reusable Game Software Components and Their Integration into Serious Game Engines
This paper presents and validates a methodology for integrating reusable software components in diverse game engines. While conforming to the RAGE com-ponent-based architecture described elsewhere, the paper explains how the interac-tions and data exchange processes between a reusable software component and a game engine should be implemented for procuring seamless integration. To this end, a RAGE-compliant C# software component providing a difficulty adaptation routine was integrated with an exemplary strategic tile-based game âTileZeroâ. Implementa-tions in MonoGame, Unity and Xamarin, respectively, have demonstrated successful portability of the adaptation component. Also, portability across various delivery platforms (Windows desktop, iOS, Android, Windows Phone) was established. Thereby this study has established the validity of the RAGE architecture and its un-derlying interaction processes for the cross-platform and cross-game engine reuse of software components. The RAGE architecture thereby accommodates the large scale development and application of reusable software components for serious gaming
Multiple populations in globular clusters. Lessons learned from the Milky Way globular clusters
Recent progress in studies of globular clusters has shown that they are not
simple stellar populations, being rather made of multiple generations. Evidence
stems both from photometry and spectroscopy. A new paradigm is then arising for
the formation of massive star clusters, which includes several episodes of star
formation. While this provides an explanation for several features of globular
clusters, including the second parameter problem, it also opens new
perspectives about the relation between globular clusters and the halo of our
Galaxy, and by extension of all populations with a high specific frequency of
globular clusters, such as, e.g., giant elliptical galaxies. We review progress
in this area, focusing on the most recent studies. Several points remain to be
properly understood, in particular those concerning the nature of the polluters
producing the abundance pattern in the clusters and the typical timescale, the
range of cluster masses where this phenomenon is active, and the relation
between globular clusters and other satellites of our Galaxy.Comment: In press (The Astronomy and Astrophysics Review
Human Skeletal Muscle Possesses an Epigenetic Memory of Hypertrophy
It is unknown if adult human skeletal muscle has an epigenetic memory of earlier encounters with growth. We report, for the first time in humans, genome-wide DNA methylation (850,000 CpGs) and gene expression analysis after muscle hypertrophy (loading), return of muscle mass to baseline (unloading), followed by later hypertrophy (reloading). We discovered increased frequency of hypomethylation across the genome after reloading (18,816 CpGs) versus earlier loading (9,153 CpG sites). We also identified AXIN1, GRIK2, CAMK4, TRAF1 as hypomethylated genes with enhanced expression after loading that maintained their hypomethylated status even during unloading where muscle mass returned to control levels, indicating a memory of these genes methylation signatures following earlier hypertrophy. Further, UBR5, RPL35a, HEG1, PLA2G16, SETD3 displayed hypomethylation and enhanced gene expression following loading, and demonstrated the largest increases in hypomethylation, gene expression and muscle mass after later reloading, indicating an epigenetic memory in these genes. Finally, genes; GRIK2, TRAF1, BICC1, STAG1 were epigenetically sensitive to acute exercise demonstrating hypomethylation after a single bout of resistance exercise that was maintained 22 weeks later with the largest increase in gene expression and muscle mass after reloading. Overall, we identify an important epigenetic role for a number of largely unstudied genes in muscle hypertrophy/memory
- âŠ