55 research outputs found

    An evaluation of ciprofloxacin pharmacokinetics in critically ill patients undergoing continuous veno-venous haemodiafiltration

    Get PDF
    BACKGROUND: The study aimed to investigate the pharmacokinetics of intravenous ciprofloxacin and the adequacy of 400 mg every 12 hours in critically ill Intensive Care Unit (ICU) patients on continuous veno-venous haemodiafiltration (CVVHDF) with particular reference to the effect of achieved flow rates on drug clearance. METHODS: This was an open prospective study conducted in the intensive care unit and research unit of a university teaching hospital. The study population was seven critically ill patients with sepsis requiring CVVHDF.Blood and ultrafiltrate samples were collected and assayed for ciprofloxacin by High Performance Liquid Chromatography (HPLC) to calculate the model independent pharmacokinetic parameters; total body clearance (TBC), half-life (t1/2) and volume of distribution (Vd). CVVHDF was performed at prescribed dialysate rates of 1 or 2 L/hr and ultrafiltration rate of 2 L/hr. The blood flow rate was 200 ml/min, achieved using a Gambro blood pump and Hospal AN69HF haemofilter. RESULTS: Seventeen profiles were obtained. CVVHDF resulted in a median ciprofloxacin t1/2 of 13.8 (range 5.15-39.4) hr, median TBC of 9.90 (range 3.10-13.2) L/hr, a median Vdss of 125 (range 79.5-554) L, a CVVHDF clearance of 2.47+/-0.29 L/hr and a clearance of creatinine (Clcr) of 2.66+/-0.25 L/hr. Thus CVVHDF, at an average flow rate of ~3.5 L/hr, was responsible for removing 26% of ciprofloxacin cleared. At the dose rate of 400 mg every 12 hr, the median estimated Cpmax/MIC and AUC0-24/MIC ratios were 10.3 and 161 respectively (for a MIC of 0.5 mg/L) and exceed the proposed criteria of >10 for Cpmax/MIC and > 100 for AUC0-24/MIC. There was a suggestion towards increased ciprofloxacin clearance by CVVHDF with increasing effluent flow rate. CONCLUSIONS: Given the growing microbial resistance to ciprofloxacin our results suggest that a dose rate of 400 mg every 12 hr, may be necessary to achieve the desired pharmacokinetic - pharmacodynamic (PK-PD) goals in patients on CVVHDF, however an extended interval may be required if there is concomitant hepatic impairment. A correlation between ciprofloxacin clearance due to CVVHDF and creatinine clearance by the filter was observed (r2 = 0.76), providing a useful clinical surrogate marker for ciprofloxacin clearance within the range studied

    The other side of recovery: validation of the Portuguese version of the subjective experiences of psychosis scale.

    Get PDF
    BACKGROUND: The aim of this study was to develop and validate a Portuguese version of The Subjective Experiences of Psychosis Scale (SEPS) for use in Portuguese-speaking populations in order to provide a self-report instrument to assess and monitor dimensions of psychotic experiences, translating patient's perspective and experience in terms of recovery from psychosis. METHODS: The sample consisted of 30 participants with psychotic disorders who had recently experienced delusions or hallucinations. The SEPS was completed along with other observer-based assessments and self-report questionnaires, such as the Brief Psychiatric Rating Scale, the Insight and Treatment Attitudes Questionnaire and the Function Assessment Short Test. RESULTS: Two main factors representing the positive and negative components of each subscale were identified. We obtained good internal consistency and test-retest reliability for the positive and negative components of all subscales. The subscales of SEPS correlated with observer-based assessments and self-report questionnaires. CONCLUSIONS: The Portuguese version of the SEPS is a useful tool in the assessment and monitoring of psychotic symptoms

    An open toolkit for tracking open science partnership implementation and impact.

    Get PDF
    Serious concerns about the way research is organized collectively are increasingly being raised. They include the escalating costs of research and lower research productivity, low public trust in researchers to report the truth, lack of diversity, poor community engagement, ethical concerns over research practices, and irreproducibility. Open science (OS) collaborations comprise of a set of practices including open access publication, open data sharing and the absence of restrictive intellectual property rights with which institutions, firms, governments and communities are experimenting in order to overcome these concerns. We gathered two groups of international representatives from a large variety of stakeholders to construct a toolkit to guide and facilitate data collection about OS and non-OS collaborations. Ultimately, the toolkit will be used to assess and study the impact of OS collaborations on research and innovation. The toolkit contains the following four elements: 1) an annual report form of quantitative data to be completed by OS partnership administrators; 2) a series of semi-structured interview guides of stakeholders; 3) a survey form of participants in OS collaborations; and 4) a set of other quantitative measures best collected by other organizations, such as research foundations and governmental or intergovernmental agencies. We opened our toolkit to community comment and input. We present the resulting toolkit for use by government and philanthropic grantors, institutions, researchers and community organizations with the aim of measuring the implementation and impact of OS partnership across these organizations. We invite these and other stakeholders to not only measure, but to share the resulting data so that social scientists and policy makers can analyse the data across projects

    Synthetic biology: ethical ramifications 2009

    Get PDF
    During 2007 and 2008 synthetic biology moved from the manifesto stage to research programs. As of 2009, synthetic biology is ramifying; to ramify means to produce differentiated trajectories from previous determinations. From its inception, most of the players in synthetic biology agreed on the need for (a) rationalized design and construction of new biological parts, devices, and systems as well as (b) the re-design of natural biological systems for specified purposes, and that (c) the versatility of designed biological systems makes them suitable to address such challenges as renewable energy, the production of inexpensive drugs, and environmental remediation, as well as providing a catalyst for further growth of biotechnology. What is understood by these goals, however, is diverse. Those assorted understandings are currently contributing to different ramifications of synthetic biology. The Berkeley Human Practices Lab, led by Paul Rabinow, is currently devoting its efforts to documenting and analyzing these ramifications as they emerge

    Nanorings and rods interconnected by self-assembly mimicking an artificial network of neurons

    Full text link
    [EN] Molecular electronics based on structures ordered as neural networks emerges as the next evolutionary milestone in the construction of nanodevices with unprecedented applications. However, the straightforward formation of geometrically defined and interconnected nanostructures is crucial for the production of electronic circuitry nanoequivalents. Here we report on the molecularly fine-tuned self-assembly of tetrakis-Schiff base compounds into nanosized rings interconnected by unusually large nanorods providing a set of connections that mimic a biological network of neurons. The networks are produced through self-assembly resulting from the molecular conformation and noncovalent intermolecular interactions. These features can be easily generated on flat surfaces and in a polymeric matrix by casting from solution under ambient conditions. The structures can be used to guide the position of electron-transporting agents such as carbon nanotubes on a surface or in a polymer matrix to create electrically conducting networks that can find direct use in constructing nanoelectronic circuits.The research leading to these results has received funding from ICIQ, ICREA, the Spanish Ministerio de Economia y Competitividad (MINECO) through project CTQ2011-27385 and the European Community Seventh Framework Program (FP7-PEOPLE-ITN-2008, CONTACT consortium) under grant agreement number 238363. We acknowledge E. C. Escudero-Adan, M. Martinez-Belmonte and E. Martin from the X-ray department of ICIQ for crystallographic analysis, and M. Moncusi, N. Argany, R. Marimon, M. Stefanova and L. Vojkuvka from the Servei de Recursos Cientifics i Tecnics from Universitat Rovira i Virgili (Tarragona, Spain).Escarcega-Bobadilla, MV.; Zelada-Guillen, GA.; Pyrlin, SV.; Wegrzyn, M.; Ramos, MMD.; Giménez Torres, E.; Stewart, A.... (2013). Nanorings and rods interconnected by self-assembly mimicking an artificial network of neurons. Nature Communications. 4:2648-2648. https://doi.org/10.1038/ncomms3648S264826484Champness, N. R. Making the right connections. Nat. Chem. 4, 149–150 (2012).Hopfield, J. J. & Tank, D. W. Computing with neural circuits: A model. Science 233, 625–633 (1986).Andres, P. R. et al. Self-assembly of a two-dimensional superlattice of molecularly linked metal clusters. Science 273, 1690–1693 (1996).Eichen, Y., Braun, E., Sivan, U. & Ben-Yoseph, G. Self-assembly of nanoelectronic components and circuits using biological templates. Acta Polym. 49, 663–670 (1998).Kawakami, T. et al. Possibilities of molecule-based spintronics of DNA wires, sheets, and related materials. Int. J. Quantum Chem. 105, 655–671 (2005).Kashtan, N., Itzkovitz, S., Milo, R. & Alon, U. Topological generalizations of network motifs. Phys. Rev. E 70, 031909 (2004).Grill, L. et al. Nano-architectures by covalent assembly of molecular building blocks. Nat. Nanotech. 2, 687–691 (2007).Lafferentz, L. et al. Controlling on-surface polymerization by hierarchical and substrate-directed growth. Nat. Chem. 4, 215–220 (2012).Alivisatos, A. P. et al. From molecules to materials: current trends and future directions. Adv. Mater. 10, 1297–1336 (1998).Pauling, L. The principles determining the structure of complex ionic crystals. J. Am. Chem. Soc. 51, 1010–1026 (1929).Damasceno, P. F., Engel, M. & Glotzer, S. C. Predictive self-assembly of polyhedra into complex structures. Science 337, 453–457 (2012).De Graaf, J. & Manna, L. A roadmap for the assembly of polyhedral particles. Science 337, 417–418 (2012).Percec, V. et al. Controlling polymer shape through the self-assembly of dendritic side-groups. Nature 391, 161–164 (1998).Stupp, S. I. et al. Supramolecular materials: self-organized nanostructures. Science 276, 384–389 (1997).Mann, S. The chemistry of form. Angew. Chem. Int. Ed. 39, 3392–3406 (2000).Sakakibara, K., Hill, J. P. & Ariga, K. Thin-film-based nanoarchitectures for soft matter: controlled assemblies into two-dimensional worlds. Small 7, 1288–1308 (2011).Huang, Z. et al. Pulsating tubules from noncovalent macrocycles. Science 337, 1521–1526 (2012).Ackermann, D., Jester, S.-S. & Famulok, M. Design strategy for DNA rotaxanes with a mechanically reinforced PX100 axle. Angew. Chem. Int. Ed. 27, 6771–6775 (2012).Marx, J. L. Microtubules: versatile organelles. Science 181, 1236–1237 (1973).Heus, H. A. & Pardi, A. Structural features that give rise to the unusual stability of RNA hairpins containing GNRA loops. Science 253, 191–194 (1991).Braun, E., Eichen, Y., Sivan, U. & Ben-Yoseph, G. DNA-templated assembly and electrode attachment of a conducting silver wire. Nature 391, 775–778 (1998).Zhang, S. Fabrication of novel biomaterials through molecular self-assembly. Nat. Biotechnol. 21, 1171–1178 (2003).Cai, X. et al. Integrated compact optical vortex beam emitters. Science 338, 363–365 (2012).Clark, A. W. & Cooper, J. M. Nanogap ring antennae as plasmonically coupled SERRS substrates. Small 7, 119–125 (2011).Armani, A. M., Kulkarni, R. P., Fraser, S. E., Flagan, R. C. & Vahala, K. J. Label-free, single-molecule detection with optical microcavities. Science 317, 783–787 (2007).Frischmann, P. D., Guieu, S., Tabeshi, R. & MacLachlan, M. J. Columnar organization of head-to-tail self-assembled Pt4 rings. J. Am. Chem. Soc. 132, 7668–7675 (2010).Frischmann, P. D. et al. Capsule formation, carboxylate exchange, and DFT exploration of cadmium cluster metallocavitands: highly dynamic supramolecules. J. Am. Chem. Soc. 132, 3893–3908 (2010).Akine, S., Hotate, S. & Nabeshima, T. A molecular leverage for helicity control and helix Inversion. J. Am. Chem. Soc. 133, 13868–13871 (2011).Salassa, G. et al. Extremely strong self-assembly of a bimetallic salen complex visualized at the single-molecule level. J. Am. Chem. Soc. 134, 7186–7192 (2012).Escárcega-Bobadilla, M. V., Salassa, G., Martínez Belmonte, M., Escudero-Adán, E. C. & Kleij, A. W. Versatile switching in substrate topicity: supramolecular chirality induction in di- and trinuclear host complexes. Chem. Eur. J. 18, 6805–6810 (2012).Frischmann, P. D., Jiang, J., Hui, J. K.-H., Grzybowski, J. J. & MacLachlan, M. J. Reversible—irreversible approach to Schiff base macrocycles. Access to isomeric macrocycles with multiple salphen pockets. Org. Lett. 10, 1255–1258 (2008).Glaser, T. Rational design of single-molecule magnets: a supramolecular approach. Chem. Commun. 47, 116–130 (2011).Lee, E. C. et al. Understanding of assembly phenomena by aromatic−aromatic interactions: benzene dimer and the substituted systems. J. Phys. Chem. A 111, 3446–3457 (2007).Grybowski, B. A., Wilmer, C. E., Kim, J., Browne, K. P. & Bishop, K. J. M. Self-assembly: from crystals to cells. Soft Matter. 5, 1110–1128 (2009).Martínez Belmonte, M. et al. Self-assembly of Zn(salphen) complexes: steric regulation, stability studies and crystallographic analysis revealing an unexpected dimeric 3,3′-t-Bu-substituted Zn(salphen) complex. Dalton Trans. 39, 4541–4550 (2010).Salassa, G., Castilla, A. M. & Kleij, A. W. Cooperative self-assembly of a macrocyclic Schiff base complex. Dalton Trans. 40, 5236–5243 (2011).Hormoz, S. & Brenner, M. P. Design principles for self-assembly with short-range interactions. Proc. Natl Acad. Sci. 108, 5193–5198 (2011).Biemans, H. A. M. et al. Hexakis porphyrinato benzenes. A new class of porphyrin arrays. J. Am. Chem. Soc. 120, 11054–11060 (1998).Lensen, M. C. et al. Aided self-assembly of porphyrin nanoaggregates into ring-shaped architectures. Chem. Eur. J. 10, 831–839 (2004).Martin, A., Buguin, A. & Brochard-Wyart, F. Dewetting nucleation centers at soft interfaces. Langmuir. 17, 6553–6559 (2001).Schenning, A. P. H. J., Benneker, F. B. G., Geurts, H. P. M., Liu, X. Y. & Nolte, R. J. M. Porphyrin wheels. J. Am. Chem. Soc. 118, 8549–8552 (1996).Deegan, R. D. et al. Capillary flow as the cause of ring strains from dried liquid drops. Nature 389, 827–829 (1997).Scriven, L. E. & Sternling, C. V. The Marangoni effects. Nature 187, 186–188 (1960).Cai, Y. & Newby, B. Z. Marangoni flow-induced self-assembly of hexagonal and stripe-like nanoparticle patterns. J. Am. Chem. Soc. 130, 6076–6077 (2008).Whitesides, G. M. & Grzybowski, B. Self-assembly at all scales. Science 295, 2418–2421 (2002).Mann, S. Self-assembly and transformation of hybrid nano-objects and nanostructures under equilibrium and non-equilibrium conditions. Nat. Mater. 8, 781–792 (2009).Gröschnel, A. H. et al. Precise hierarchical self-assembly of multicompartment micelles. Nat. Commun. 3, 710 (2012).Adam, M., Dogic, Z., Keller, S. L. & Fraden, S. Entropically driven microphase transitions in mixtures of colloidal rods and spheres. Nature 393, 349–352 (1998).Ohara, P. C., Heath, J. R. & Gelbart, W. M. Self-assembly of submicrometer rings of particles from solutions of nanoparticles. Angew. Chem. Int. Ed. 36, 1077–1080 (1997).Xu, J., Xia, J. & Lin, Z. Evaporation-induced self-assembly of nanoparticles from a sphere-on-flat geometry. Angew. Chem. Int. Ed. 46, 1860–1863 (2007).Yosef, G. & Rabani, E. Self-assembly of nanoparticles into rings: A lattice-gas model. J. Phys. Chem. B 110, 20965–20972 (2006).Khanal, B. P. & Zubarev, E. R. Rings of nanorods. Angew. Chem. Int. Ed. 46, 2195–2198 (2007).Wang, Z. et al. One-step, self-assembly, alignment, and patterning of organic semiconductor nanowires by controlled evaporation of confined microfluids. Angew. Chem. Int. Ed. 50, 2811–2815 (2011).Hong, S. W. et al. Directed self-assembly of gradient concentric carbon nanotube rings. Adv. Func. Mater. 18, 2114–2122 (2008).Palma, M. et al. Controlled formation of carbon nanotube junctions via linker-induced assembly in aqueous solution. J. Am. Chem. Soc. 135, 8440–8443 (2013).Horcas, I. et al. WSXM: A software for scanning probe microscopy and a tool for nanotechnology. Rev. Sci. Instrum. 78, 013705 (2007).Soler, J. M. et al. The SIESTA method for ab initio order-n materials simulation. J. Phys. Cond. Matter 14, 2745–2779 (2002).Haynes, P. D., Mostof, A. A., Skylaris, C. & Payne, M. C. ONETEP: Linear-scaling density-functional theory with plane-waves. J. Phys. Conf. Ser. 26, 143–148 (2006).Valiev, M. et al. NWCHEM: A comprehensive and scalable open-source solution for large scale molecular simulations. Comp. Phys. Commun. 181, 1477–1489 (2010).Plimpton, S. Fast parallel algorithms for short-range molecular dynamics. J. Comp. Phys. 117, 1–19 (1995)

    The development and evaluation of a five-language multi-perspective standardised measure: clinical decision-making involvement and satisfaction (CDIS).

    Get PDF
    BACKGROUND: The aim of this study was to develop and evaluate a brief quantitative five-language measure of involvement and satisfaction in clinical decision-making (CDIS) - with versions for patients (CDIS-P) and staff (CDIS-S) - for use in mental health services. METHODS: An English CDIS was developed by reviewing existing measures, focus groups, semistructured interviews and piloting. Translations into Danish, German, Hungarian and Italian followed the International Society for Pharmacoeconomics and Outcomes Research (ISPOR) Task Force principles of good practice for translation and cultural adaptation. Psychometricevaluation involved testing the measure in secondary mental health services in Aalborg, Debrecen, London, Naples, Ulm and Zurich. RESULTS: After appraising 14 measures, the Control Preference Scale and Satisfaction With Decision-making English-language scales were modified and evaluated in interviews (n = 9), focus groups (n = 22) and piloting (n = 16). Translations were validated through focus groups (n = 38) and piloting (n = 61). A total of 443 service users and 403 paired staff completed CDIS. The Satisfaction sub-scale had internal consistency of 0.89 (0.86-0.89 after item-level deletion) for staff and 0.90 (0.87-0.90) for service users, both continuous and categorical (utility) versions were associated with symptomatology and both staff-rated and service userrated therapeutic alliance (showing convergent validity), and not with social disability (showing divergent validity), and satisfaction predicted staff-rated (OR 2.43, 95%CI 1.54- 3.83 continuous, OR 5.77, 95%CI 1.90-17.53 utility) and service user-rated (OR 2.21, 95%CI 1.51-3.23 continuous, OR 3.13, 95%CI 1.10-8.94 utility) decision implementation two months later. The Involvement sub-scale had appropriate distribution and no floor or ceiling effects, was associated with stage of recovery, functioning and quality of life (staff only) (showing convergent validity), and not with symptomatology or social disability (showing divergent validity), and staff-rated passive involvement by the service user predicted implementation (OR 3.55, 95%CI 1.53-8.24). Relationships remained after adjusting for clustering by staff. CONCLUSIONS: CDIS demonstrates adequate internal consistency, no evidence of item redundancy, appropriate distribution, and face, content, convergent, divergent and predictive validity. It can be recommended for research and clinical use. CDIS-P and CDIS-S in all 3 five languages can be downloaded at http://www.cedar-net.eu/instruments. TRIAL REGISTRATION: ISRCTN75841675.CEDAR study is funded by a grant from the Seventh Framework Programme (Research Area HEALTH-2007-3.1-4 Improving clinical decision making) of the European Union (Grant no. 223290)

    De Novo Truncating Mutations in WASF1 Cause Intellectual Disability with Seizures.

    Get PDF
    Next-generation sequencing has been invaluable in the elucidation of the genetic etiology of many subtypes of intellectual disability in recent years. Here, using exome sequencing and whole-genome sequencing, we identified three de novo truncating mutations in WAS protein family member 1 (WASF1) in five unrelated individuals with moderate to profound intellectual disability with autistic features and seizures. WASF1, also known as WAVE1, is part of the WAVE complex and acts as a mediator between Rac-GTPase and actin to induce actin polymerization. The three mutations connected by Matchmaker Exchange were c.1516C>T (p.Arg506Ter), which occurs in three unrelated individuals, c.1558C>T (p.Gln520Ter), and c.1482delinsGCCAGG (p.Ile494MetfsTer23). All three variants are predicted to partially or fully disrupt the C-terminal actin-binding WCA domain. Functional studies using fibroblast cells from two affected individuals with the c.1516C>T mutation showed a truncated WASF1 and a defect in actin remodeling. This study provides evidence that de novo heterozygous mutations in WASF1 cause a rare form of intellectual disability

    Telomerecat: A ploidy-agnostic method for estimating telomere length from whole genome sequencing data (vol 8, 1300, 2018)

    Get PDF
    corecore