179 research outputs found

    First-principles modeling of the polycyclic aromatic hydrocarbons reduction

    Full text link
    Density functional theory modelling of the reduction of realistic nanographene molecules (C42H18, C48H18 and C60H24) by molecular hydrogen evidences for the presence of limits in the hydrogenation process. These limits caused the contentions between three-fold symmetry of polycyclic aromatic hydrocarbon molecules and two-fold symmetry of adsorbed hydrogen pairs. Increase of the binding energy between nanographenes during reduction is also discussed as possible cause of the experimentally observed limited hydrogenation of studied nanographenes.Comment: 18 pages, 7 figures, accepted to J. Phys. Chem.

    The pH of the skin surface and its impact on the barrier function

    Get PDF
    The `acid mantle' of the stratum corneum seems to be important for both permeability barrier formation and cutaneous antimicrobial defense. However, the origin of the acidic pH, measurable on the skin surface, remains conjectural. Passive and active influencing factors have been proposed, e. g. eccrine and sebaceous secretions as well as proton pumps. In recent years, numerous investigations have been published focusing on the changes in the pH of the deeper layers of the stratum corneum, as well as on the influence of physiological and pathological factors. The pH of the skin follows a sharp gradient across the stratum corneum, which is suspected to be important in controlling enzymatic activities and skin renewal. The skin pH is affected by a great number of endogenous factors, e. g. skin moisture, sweat, sebum, anatomic site, genetic predisposition and age. In addition, exogenous factors like detergents, application of cosmetic products, occlusive dressings as well as topical antibiotics may influence the skin pH. Changes in the pH are reported to play a role in the pathogenesis of skin diseases like irritant contact dermatitis, atopic dermatitis, ichthyosis, acne vulgaris and Candida albicans infections. Therefore, the use of skin cleansing agents, especially synthetic detergents with a pH of about 5.5, may be of relevance in the prevention and treatment of those skin diseases. Copyright (c) 2006 S. Karger AG, Base

    Ab initio simulations of the kinetic properties of the hydrogen monomer on graphene

    Full text link
    The understanding of the kinetic properties of hydrogen (isotopes) adatoms on graphene is important in many fields. The kinetic properties of hydrogen-isotope (H, D and T) monomers were simulated using a composite method consisting of density functional theory, density functional perturbation theory and harmonic transition state theory. The kinetic changes of the magnetic property and the aromatic π\pi bond of the hydrogenated graphene during the desorption and diffusion of the hydrogen monomer was discussed. The vibrational zero-point energy corrections in the activation energies were found to be significant, ranging from 0.072 to 0.205 eV. The results obtained from quantum-mechanically modified harmonic transition state theory were compared with the ones obtained from classical-limit harmonic transition state theory over a wide temperature range. The phonon spectra of hydrogenated graphene were used to closely explain the (reversed) isotope effects in the prefactor, activation energy and jump frequency of the hydrogen monomer. The kinetic properties of the hydrogen-isotope monomers were simulated under conditions of annealing for 10 minutes and of heating at a constant rate (1.0 K/s). The isotope effect was observed; that is, a hydrogen monomer of lower mass is desorbed and diffuses more easily (with lower activation energies). The results presented herein are very similar to other reported experimental observations. This study of the kinetic properties of the hydrogen monomer and many other involved implicit mechanisms provides a better understanding of the interaction between hydrogen and graphene.Comment: Accepted by J. Phys. Chem.

    The MALATANG Survey : The L GAS-L IR Correlation on Sub-kiloparsec Scale in Six Nearby Star-forming Galaxies as Traced by HCN J = 4 → 3 and HCO + J = 4 → 3

    Get PDF
    This is an author-created, un-copyedited version of an article published in The Astrophysical Journal. The Version of Record is available online at https://doi.org/10.3847/1538-4357/aac512.We present HCN J = 4→3 and HCO+ J = 4→3 maps of six nearby star-forming galaxies, NGC 253, NGC 1068, IC 342, M82, M83, and NGC 6946, obtained with the James Clerk Maxwell Telescope as part of the MALATANG survey. All galaxies were mapped in the central 2×2 region at 14 (FWHM) resolution (corresponding to linear scales of ∼0.2-1.0 kpc). The LIR-Ldense relation, where the dense gas is traced by the HCN J = 4→3 and the HCO+ J = 4→3 emission, measured in our sample of spatially resolved galaxies is found to follow the linear correlation established globally in galaxies within the scatter. We find that the luminosity ratio, LIR/Ldense, shows systematic variations with LIR within individual spatially resolved galaxies, whereas the galaxy-integrated ratios vary little. A rising trend is also found between LIR/Ldense ratio and the warm-dust temperature gauged by the 70 μm/100 μm flux ratio. We find that the luminosity ratios of IR/HCN (4-3) and IR/HCO+ (4-3), which can be taken as a proxy for the star formation efficiency (SFE) in the dense molecular gas (SFE dense), appear to be nearly independent of the dense gas fraction ( f dense) for our sample of galaxies. The SFE of the total molecular gas (SFEmol) is found to increase substantially with f dense when combining our data with those on local (ultra)luminous infrared galaxies and high-z quasars. The mean LHCN(4-3) LHCO+(4-3) line ratio measured for the six targeted galaxies is 0.9±0.6. No significant correlation is found for the L'HCN(4-3) L'HCO+(4-3) ratio with the star formation rate as traced by L IR, nor with the warm-dust temperature, for the different populations of galaxies.Peer reviewe

    The MALATANG Survey : Dense Gas and Star Formation from High Transition HCN and HCO+ maps of NGC253

    Get PDF
    This article has been accepted for publication in Monthly Notices of the Royal Astronomical Society. © 2020 The Author(s). Published by Oxford University Press on behalf of the Royal Astronomical Society. All rights reserved.To study the high-transition dense-gas tracers and their relationships to the star formation of the inner \sim 2 kpc circumnuclear region of NGC253, we present HCN J=43J=4-3 and HCO+J=43^+ J=4-3 maps obtained with the James Clerk Maxwell Telescope (JCMT). With the spatially resolved data, we compute the concentration indices r90/r50r_{90}/r_{50} for the different tracers. HCN and HCO+^+ 4-3 emission features tend to be centrally concentrated, which is in contrast to the shallower distribution of CO 1-0 and the stellar component. The dense-gas fraction (fdensef_\text{dense}, traced by the velocity-integrated-intensity ratios of HCN/CO and HCO+^+/CO) and the ratio R31R_\text{31} (CO 3-2/1-0) decline towards larger galactocentric distances, but increase with higher SFR surface density. The radial variation and the large scatter of fdensef_\text{dense} and R31R_\text{31} imply distinct physical conditions in different regions of the galactic disc. The relationships of fdensef_\text{dense} versus Σstellar\Sigma_\text{stellar}, and SFEdense_\text{dense} versus Σstellar\Sigma_\text{stellar} are explored. SFEdense_\text{dense} increases with higher Σstellar\Sigma_\text{stellar} in this galaxy, which is inconsistent with previous work that used HCN 1-0 data. This implies that existing stellar components might have different effects on the high-JJ HCN and HCO+^+ than their low-JJ emission. We also find that SFEdense_\text{dense} seems to be decreasing with higher fdensef_\text{dense}, which is consistent with previous works, and it suggests that the ability of the dense gas to form stars diminishes when the average density of the gas increases. This is expected in a scenario where only the regions with high-density contrast collapse and form stars.Peer reviewe

    N-type graphene induced by dissociative H-2 adsorption at room temperature

    Get PDF
    Studies of the interaction between hydrogen and graphene have been increasingly required due to the indispensable modulation of the electronic structure of graphene for device applications and the possibility of using graphene as a hydrogen storage material. Here, we report on the behaviour of molecular hydrogen on graphene using the gate voltage-dependent resistance of single-, bi-, and multi-layer graphene sheets as a function of H-2 gas pressure up to 24 bar from 300 K to 345 K. Upon H-2 exposure, the charge neutrality point shifts toward the negative gate voltage region, indicating n-type doping, and distinct Raman signature changes, increases in the interlayer distance of multi-layer graphene, and a decrease in the d-spacing occur, as determined by TEM. These results demonstrate the occurrence of dissociative H-2 adsorption due to the existence of vacancy defects on graphene.open12

    A Drastic Reduction in the Life Span of Cystatin C L68Q Carriers Due to Life-Style Changes during the Last Two Centuries

    Get PDF
    Hereditary cystatin C amyloid angiopathy (HCCAA) is an autosomal dominant disease with high penetrance, manifest by brain hemorrhages in young normotensive adults. In Iceland, this condition is caused by the L68Q mutation in the cystatin C gene, with contemporary carriers reaching an average age of only 30 years. Here, we report, based both on linkage disequilibrium and genealogical evidence, that all known copies of this mutation derive from a common ancestor born roughly 18 generations ago. Intriguingly, the genealogies reveal that obligate L68Q carriers born 1825 to 1900 experienced a drastic reduction in life span, from 65 years to the present-day average. At the same time, a parent-of-origin effect emerged, whereby maternal inheritance of the mutation was associated with a 9 year reduction in life span relative to paternal inheritance. As these trends can be observed in several different extended families, many generations after the mutational event, it seems likely that some environmental factor is responsible, perhaps linked to radical changes in the life-style of Icelanders during this period. A mutation with such radically different phenotypic effects in reaction to normal variation in human life-style not only opens the possibility of preventive strategies for HCCAA, but it may also provide novel insights into the complex relationship between genotype and environment in human disease

    Prospects for hydrogen storage in graphene

    Full text link
    Hydrogen-based fuel cells are promising solutions for the efficient and clean delivery of electricity. Since hydrogen is an energy carrier, a key step for the development of a reliable hydrogen-based technology requires solving the issue of storage and transport of hydrogen. Several proposals based on the design of advanced materials such as metal hydrides and carbon structures have been made to overcome the limitations of the conventional solution of compressing or liquefying hydrogen in tanks. Nevertheless none of these systems are currently offering the required performances in terms of hydrogen storage capacity and control of adsorption/desorption processes. Therefore the problem of hydrogen storage remains so far unsolved and it continues to represent a significant bottleneck to the advancement and proliferation of fuel cell and hydrogen technologies. Recently, however, several studies on graphene, the one-atom-thick membrane of carbon atoms packed in a honeycomb lattice, have highlighted the potentialities of this material for hydrogen storage and raise new hopes for the development of an efficient solid-state hydrogen storage device. Here we review on-going efforts and studies on functionalized and nanostructured graphene for hydrogen storage and suggest possible developments for efficient storage/release of hydrogen at ambient conditions

    Geophagy Practices and the Content of Chemical Elements in the Soil Eaten by Pregnant Women in Artisanal and Small Scale Gold Mining Communities in Tanzania.

    Get PDF
    Geophagy, a form of pica, is the deliberate consumption of soil and is relatively common across Sub-Saharan Africa. In Tanzania, pregnant women commonly eat soil sticks sold in the market (pemba), soil from walls of houses, termite mounds, and ground soil (kichuguu). The present study examined geophagy practices of pregnant women in a gold mining area of Geita District in northwestern Tanzania, and also examined the potential for exposure to chemical elements by testing soil samples. We conducted a cross sectional study using a convenience sample of 340 pregnant women, ranging in age from 15-49 years, who attended six government antenatal clinics in the Geita District, Tanzania. Structured interviews were conducted in June-August, 2012, to understand geophagy practices. In addition, soil samples taken from sources identified by pregnant women practicing geophagy were analysed for mineral element content. Geophagy was reported by 155 (45.6%) pregnant women with 85 (54.8%) initiating the practice in the first trimester. A total of 101 (65%) pregnant women reported eating soil 2 to 3 times per day while 20 (13%) ate soil more than 3 times per day. Of 155 pregnant women 107 (69%) bought pemba from local shops, while 48 (31%) consumed ground soil kichuguu. The estimated mean quantity of soil consumed from pemba was 62.5 grams/day. Arsenic, chromium, copper, iron, manganese, nickel and zinc levels were found in both pemba and kichuguu samples. Cadmium and mercury were found only in the kichuguu samples. Based on daily intake estimates, arsenic, copper and manganese for kichuguu and copper and manganese for pemba samples exceed the oral Minimum Risk Levels designated by the U.S. Agency for Toxic Substance and Disease Registry. Almost 50% of participants practiced geophagy in Geita District consistent with other reports from Africa. Both pemba and kichuguu contained chemical elements at varying concentration, mostly above MRLs. As such, pregnant women who eat soil in Geita District are exposed to potentially high levels of chemical elements, depending upon frequency of consumption, daily amount consumed and the source location of soil eaten
    corecore