1,156 research outputs found
Pure Anderson Motives and Abelian \tau-Sheaves
Pure t-motives were introduced by G. Anderson as higher dimensional
generalizations of Drinfeld modules, and as the appropriate analogs of abelian
varieties in the arithmetic of function fields. In order to construct moduli
spaces for pure t-motives the second author has previously introduced the
concept of abelian \tau-sheaf. In this article we clarify the relation between
pure t-motives and abelian \tau-sheaves. We obtain an equivalence of the
respective quasi-isogeny categories. Furthermore, we develop the elementary
theory of both structures regarding morphisms, isogenies, Tate modules, and
local shtukas. The later are the analogs of p-divisible groups.Comment: final version as it appears in Mathematische Zeitschrif
EMPOWER-1.0: an Efficient Model of Planktonic ecOsystems WrittEn in R
Modelling marine ecosystems requires insight and judgement when it comes to deciding upon appropriate model structure, equations and parameterisation. Many processes are relatively poorly understood and tough decisions must be made as to how to mathematically simplify the real world. Here, we present an efficient plankton modelling testbed, EMPOWER-1.0 (Efficient Model of Planktonic ecOsystems WrittEn in R), coded in the freely available language R. The testbed uses simple two-layer "slab" physics whereby a seasonally varying mixed layer which contains the planktonic marine ecosystem is positioned above a deep layer that contains only nutrient. As such, EMPOWER-1.0 provides a readily available and easy to use tool for evaluating model structure, formulations and parameterisation. The code is transparent and modular such that modifications and changes to model formulation are easily implemented allowing users to investigate and familiarise themselves with the inner workings of their models. It can be used either for preliminary model testing to set the stage for further work, e.g. coupling the ecosystem model to 1-D or 3-D physics, or for undertaking front line research in its own right. EMPOWER-1.0 also serves as an ideal teaching tool. In order to demonstrate the utility of EMPOWER-1.0, we implemented a simple nutrient–phytoplankton–zooplankton–detritus (NPZD) ecosystem model and carried out both a parameter tuning exercise and structural sensitivity analysis. Parameter tuning was demonstrated for four contrasting ocean sites, focusing on station BIOTRANS in the North Atlantic (47° N, 20° W), highlighting both the utility of undertaking a planned sensitivity analysis for this purpose, yet also the subjectivity which nevertheless surrounds the choice of which parameters to tune. Structural sensitivity tests were then performed comparing different equations for calculating daily depth-integrated photosynthesis, as well as mortality terms for both phytoplankton and zooplankton. Regarding the calculation of daily photosynthesis, for example, results indicated that the model was relatively insensitive to the choice of photosynthesis–irradiance curve, but markedly sensitive to the method of calculating light attenuation in the water column. The work highlights the utility of EMPOWER-1.0 as a means of comprehending, diagnosing and formulating equations for the dynamics of marine ecosystems
An ansatz for the nonlinear Demkov-Kunike problem for cold molecule formation
We study nonlinear mean-field dynamics of ultracold molecule formation in the
case when the external field configuration is defined by the level-crossing
Demkov-Kunike model, characterized by a bell-shaped coupling and finite
variation of the detuning. Analyzing the fast sweep rate regime of the strong
interaction limit, which models a situation when the peak value of the coupling
is large enough and the resonance crossing is sufficiently fast, we construct a
highly accurate ansatz to describe the temporal dynamics of the molecule
formation in the mentioned interaction regime. The absolute error of the
constructed approximation is less than 3*10^-6 for the final transition
probability while at certain time points it might increase up to 10^-3.
Examining the role of the different terms in the constructed approximation, we
prove that in the fast sweep rate regime of the strong interaction limit the
temporal dynamics of the atom-molecule conversion effectively consists of the
process of resonance crossing, which is governed by a nonlinear equation,
followed by atom-molecular coherent oscillations which are basically described
by a solution of the linear problem, associated with the considered nonlinear
one.Comment: Accepted for publication in J. Contemp. Phys. (Armenian National
Academy of Sciences) 8 pages, 4 figure
Understorey plant community and light availability in conifer plantations and natural hardwood forests in Taiwan
Questions: What are the effects of replacing mixed species natural forests with Cryptomeria japonica plantations on understorey plant functional and species diversity? What is the role of the understorey light environment in determining understorey diversity and community in the two types of forest?
Location: Subtropical northeast Taiwan.
Methods: We examined light environments using hemispherical photography, and diversity and composition of understorey plants of a 35‐yr C. japonica plantation and an adjacent natural hardwood forest.
Results: Understorey plant species richness was similar in the two forests, but the communities were different; only 18 of the 91 recorded understorey plant species occurred in both forests. Relative abundance of plants among different functional groups differed between the two forests. Relative numbers of shade‐tolerant and shade‐intolerant seedling individuals were also different between the two forest types with only one shade‐intolerant seedling in the plantation compared to 23 seedlings belonging to two species in the natural forest. In the natural forest 11 species of tree seedling were found, while in the plantation only five were found, and the seedling density was only one third of that in the natural forest. Across plots in both forests, understorey plant richness and diversity were negatively correlated with direct sunlight but not indirect sunlight, possibly because direct light plays a more important role in understorey plant growth.
Conclusions: We report lower species and functional diversity and higher light availability in a natural hardwood forest than an adjacent 30‐yr C. japonica plantation, possibly due to the increased dominance of shade‐intolerant species associated with higher light availability. To maintain plant diversity, management efforts must be made to prevent localized losses of shade‐adapted understorey plants
Heisenberg exchange enhancement by orbital relaxation in cuprate compounds
We calculate the Heisenberg exchange J in the quasi-2D antiferromagnetic
cuprates La2CuO4, YBa2Cu3O6, Nd2CuO4 and Sr2CuO2Cl2. We apply all-electron
(MC)SCF and non-orthogonal CI calculations to [Cu2O11]18-, [Cu2O9]14-,
[Cu2O7]10- and [Cu2O7Cl4]14- clusters in a model charge embedding. The (MC)SCF
triplet and singlet ground states are well characterized by Cu2+ (dx2-y2) and
O2-. The antiferromagnetic exchange is strongly enhanced by admixing relaxed
(MC)SCF triplet and singlet excited states, in which a single electron is
transferred from the central O ion to Cu. We ascribe this effect to orbital
relaxation in the charge transfer component of the wave function. Close
agreement with experiment is obtained.Comment: publishe
Shell-model calculations of neutrino scattering from 12C
Neutrino reaction cross-sections, , ,
-capture and photoabsorption rates on C are computed within a
large-basis shell-model framework, which included excitations up to
. When ground-state correlations are included with an open
-shell the predictions of the calculations are in reasonable agreement with
most of the experimental results for these reactions. Woods-Saxon radial wave
functions are used, with their asymptotic forms matched to the experimental
separation energies for bound states, and matched to a binding energy of 0.01
MeV for unbound states. For comparison purposes, some results are given for
harmonic oscillator radial functions. Closest agreement between theory and
experiment is achieved with unrestricted shell-model configurations and
Woods-Saxon radial functions. We obtain for the neutrino-absorption inclusive
cross sections: cm for the
decay-in-flight flux in agreement with the LSND datum of
cm; and cm for the decay-at-rest flux, less than the
experimental result of cm.Comment: 19 pages. ReVTeX. No figure
Stability of the trapped nonconservative Gross-Pitaevskii equation with attractive two-body interaction
The dynamics of a nonconservative Gross-Pitaevskii equation for trapped
atomic systems with attractive two-body interaction is numerically
investigated, considering wide variations of the nonconservative parameters,
related to atomic feeding and dissipation. We study the possible limitations of
the mean field description for an atomic condensate with attractive two-body
interaction, by defining the parameter regions where stable or unstable
formation can be found. The present study is useful and timely considering the
possibility of large variations of attractive two-body scattering lengths,
which may be feasible in recent experiments.Comment: 6 pages, 5 figures, submitted to Physical Review
Study of solid 4He in two dimensions. The issue of zero-point defects and study of confined crystal
Defects are believed to play a fundamental role in the supersolid state of
4He. We report on studies by exact Quantum Monte Carlo (QMC) simulations at
zero temperature of the properties of solid 4He in presence of many vacancies,
up to 30 in two dimensions (2D). In all studied cases the crystalline order is
stable at least as long as the concentration of vacancies is below 2.5%. In the
2D system for a small number, n_v, of vacancies such defects can be identified
in the crystalline lattice and are strongly correlated with an attractive
interaction. On the contrary when n_v~10 vacancies in the relaxed system
disappear and in their place one finds dislocations and a revival of the
Bose-Einstein condensation. Thus, should zero-point motion defects be present
in solid 4He, such defects would be dislocations and not vacancies, at least in
2D. In order to avoid using periodic boundary conditions we have studied the
exact ground state of solid 4He confined in a circular region by an external
potential. We find that defects tend to be localized in an interfacial region
of width of about 15 A. Our computation allows to put as upper bound limit to
zero--point defects the concentration 0.003 in the 2D system close to melting
density.Comment: 17 pages, accepted for publication in J. Low Temp. Phys., Special
Issue on Supersolid
Tannakian duality for Anderson-Drinfeld motives and algebraic independence of Carlitz logarithms
We develop a theory of Tannakian Galois groups for t-motives and relate this
to the theory of Frobenius semilinear difference equations. We show that the
transcendence degree of the period matrix associated to a given t-motive is
equal to the dimension of its Galois group. Using this result we prove that
Carlitz logarithms of algebraic functions that are linearly independent over
the rational function field are algebraically independent.Comment: 39 page
On the role of the magnetic dipolar interaction in cold and ultracold collisions: Numerical and analytical results for NH() + NH()
We present a detailed analysis of the role of the magnetic dipole-dipole
interaction in cold and ultracold collisions. We focus on collisions between
magnetically trapped NH molecules, but the theory is general for any two
paramagnetic species for which the electronic spin and its space-fixed
projection are (approximately) good quantum numbers. It is shown that dipolar
spin relaxation is directly associated with magnetic-dipole induced avoided
crossings that occur between different adiabatic potential curves. For a given
collision energy and magnetic field strength, the cross-section contributions
from different scattering channels depend strongly on whether or not the
corresponding avoided crossings are energetically accessible. We find that the
crossings become lower in energy as the magnetic field decreases, so that
higher partial-wave scattering becomes increasingly important \textit{below} a
certain magnetic field strength. In addition, we derive analytical
cross-section expressions for dipolar spin relaxation based on the Born
approximation and distorted-wave Born approximation. The validity regions of
these analytical expressions are determined by comparison with the NH + NH
cross sections obtained from full coupled-channel calculations. We find that
the Born approximation is accurate over a wide range of energies and field
strengths, but breaks down at high energies and high magnetic fields. The
analytical distorted-wave Born approximation gives more accurate results in the
case of s-wave scattering, but shows some significant discrepancies for the
higher partial-wave channels. We thus conclude that the Born approximation
gives generally more meaningful results than the distorted-wave Born
approximation at the collision energies and fields considered in this work.Comment: Accepted by Eur. Phys. J. D for publication in Special Issue on Cold
Quantum Matter - Achievements and Prospects (2011
- …
