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Abstract. Modelling marine ecosystems requires insight

and judgement when it comes to deciding upon appropri-

ate model structure, equations and parameterisation. Many

processes are relatively poorly understood and tough deci-

sions must be made as to how to mathematically simplify

the real world. Here, we present an efficient plankton mod-

elling testbed, EMPOWER-1.0 (Efficient Model of Plank-

tonic ecOsystems WrittEn in R), coded in the freely available

language R. The testbed uses simple two-layer “slab” physics

whereby a seasonally varying mixed layer which contains

the planktonic marine ecosystem is positioned above a deep

layer that contains only nutrient. As such, EMPOWER-1.0

provides a readily available and easy to use tool for eval-

uating model structure, formulations and parameterisation.

The code is transparent and modular such that modifica-

tions and changes to model formulation are easily imple-

mented allowing users to investigate and familiarise them-

selves with the inner workings of their models. It can be used

either for preliminary model testing to set the stage for fur-

ther work, e.g. coupling the ecosystem model to 1-D or 3-

D physics, or for undertaking front line research in its own

right. EMPOWER-1.0 also serves as an ideal teaching tool.

In order to demonstrate the utility of EMPOWER-1.0, we im-

plemented a simple nutrient–phytoplankton–zooplankton–

detritus (NPZD) ecosystem model and carried out both a

parameter tuning exercise and structural sensitivity analy-

sis. Parameter tuning was demonstrated for four contrasting

ocean sites, focusing on station BIOTRANS in the North At-

lantic (47◦ N, 20◦W), highlighting both the utility of under-

taking a planned sensitivity analysis for this purpose, yet also

the subjectivity which nevertheless surrounds the choice of

which parameters to tune. Structural sensitivity tests were

then performed comparing different equations for calculat-

ing daily depth-integrated photosynthesis, as well as mortal-

ity terms for both phytoplankton and zooplankton. Regard-

ing the calculation of daily photosynthesis, for example, re-

sults indicated that the model was relatively insensitive to the

choice of photosynthesis–irradiance curve, but markedly sen-

sitive to the method of calculating light attenuation in the wa-

ter column. The work highlights the utility of EMPOWER-

1.0 as a means of comprehending, diagnosing and formulat-

ing equations for the dynamics of marine ecosystems.

1 Introduction

Ecosystem models are ubiquitous in marine science today;

they are used to study a range of compelling topics includ-

ing ocean biogeochemistry and its response to changing cli-

mate, end-to-end links from physics to fish and associated

trophic cascades, the impact of pollution on the formation of

harmful algal blooms, etc. (e.g. Steele, 2012; Gilbert et al.,

2014; Holt et al., 2014; Kwiatkowski et al., 2014). Models

have become progressively elaborated in recent years, a con-

sequence of both superior computing power and an expand-

ing knowledge base from field studies and laboratory experi-

ments. All manner of models have appeared in the published

literature varying in terms of structure, equations and param-

eterisation. Anderson et al. (2014), for example, commented

on the “enormous” diversity seen in chosen formulations for

dissolved organic matter (DOM) in the current generation of

marine ecosystem models and asked whether reliable sim-
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ulations can be expected given this diversity. This question

applies not just to modelling DOM, but also to most pro-

cesses and components considered in modern marine ecosys-

tem modelling (Fulton et al., 2003a; Anderson et al., 2010,

2013).

A certain amount of variability among models is to be

expected because of differing objectives among modelling

studies. A distinction can, for example, be made between

models designed primarily for improving understanding of

system dynamics, as opposed to those for out-and-out pre-

diction (Anderson, 2010). Ultimately, however, much of the

variability seen in model structure and equations is an out-

come of personal choice on the part of the practitioner. In-

deed, the art of modelling is in making decisions regarding

model structure, parameters, design of simulations, types of

output analysis, etc. The underlying root of this diversity

and seeming subjectivity is that, despite a wealth of avail-

able data, many processes in marine ecosystems are not easy

to characterise mathematically. Modellers therefore need to

consider how this uncertainty affects their results and use it to

inform how best to construct and parameterise their models

for chosen applications. Sensitivity analysis and model vali-

dation are the obvious means to address model uncertainty, as

well as model intercomparison studies. There is however an

additional problem, namely that ocean biology is inextricably

linked to physics and both incur modelling error. An appro-

priate physical framework must be selected that adequately

represents mixing, advection and the seasonal changes in the

depth of the upper mixed layer. Understandably, 1- or 3-D

physical frameworks are the usual choice, given the real-

ism thus provided. But this increased dimensionality (or spa-

tial resolution) comes at a price. They require expertise and

time to set up, sufficient computational resources for running

and storage of output and, last but not least, analysis of the

frequently copious output into coherent results. These con-

straints serve to limit the extent to which modellers can and

do carry out extensive diagnosis and testing of their models

including sensitivity analysis and validation.

In the early days of marine ecosystem modelling, it was

necessary to resort to simple empirical approaches to deal

with physics given the limited power of computers at the

time. The so-called zero-dimensional “slab” models that

came to the fore were the cornerstone of their discipline

in the mid 20th century. Slab models have a simple phys-

ical structure consisting of two vertical layers. The depth

of the upper (mixed) layer, which can vary seasonally, was

determined empirically from observations of vertical pro-

files of temperature or density. Containing the pelagic ma-

rine ecosystem, the upper layer was positioned above an es-

sentially implicit (in that it is unchanging) bottom layer that

contains a (typically fixed) nutrient concentration. Such slab

models can be run quickly and straightforwardly, enabling

both a multitude of runs and ease of analysing results.

Despite the simplicity of the two-layer slab physics, these

models are sufficiently well formulated to permit realistic

and insightful simulations of marine ecosystems (e.g. Evans

and Parslow, 1985; Fasham et al., 1990). Indeed, looking

back at the history of marine ecosystem modelling, it is re-

markable how simple models allowed so much progress to be

made, notably by pioneers such as Gordon Riley, John Steele

and Mike Fasham (Gentleman, 2002; Anderson and Gentle-

man, 2012). We admire these individuals when it came to en-

capsulating the complexity of the real world with mathemat-

ical equations. They necessarily had to think deeply about

their models because they had to build them from scratch

as, in most instances, established relationships for processes

such as photosynthesis, grazing and mortality could not be

borrowed from elsewhere. A key aspect of their success, we

submit, is that they experimented extensively with their mod-

els, trying out different formulations and parameterisations in

order to see the effect on model predictions (e.g. Anderson

and Gentleman, 2012). It is this preparation that served them

so well, allowing them to set up meaningful simulations from

which they could so effectively draw conclusions and make

progress in their field of study.

The need for preparation in terms of exploring sensitiv-

ity to ecosystem model formulations and parameterisation

is no less in the modern era, indeed it is arguably greater

given our deeper knowledge of the marine biota and a corre-

spondingly larger multitude of mathematical formulations to

choose from. We propose that modellers can benefit from ex-

tensively “playing with” and testing their models and that the

use of simple slab physics is an obvious choice in this regard,

at least for ocean locations where the bulk of the biological

activity occurs in the surface mixed layer. Experimentation

of this kind may then be used to set the stage for the “seri-

ous” model runs that may follow, e.g. in 1-D or 3-D, although

it is also entirely possible to undertake successful studies us-

ing only slab physics models. In addition, because they are

straightforward to understand and do not require powerful

computing resources to run, models that incorporate simple

slab physics are ideal for use in teaching future generations

of marine scientists about ecological structure and function.

Here, we present a slab a.k.a. zero-dimensional, and hence

computationally efficient, plankton ecosystem testbed, coded

in the freely available R environment, EMPOWER-1.0 : Ef-

ficient Model of Planktonic ecOsystems WrittEn in R. Our

aim is to provide EMPOWER-1.0 for general use and to

demonstrate how it can readily and easily be used both to

study ecosystem dynamics at a range of ocean sites and to

assess the pros and cons of different model choices for best

representing and analysing the ecosystems in question. EM-

POWER’s code is structured in a modular way to ensure

maximum ease of adjusting parameters and formulations

and, indeed, the inclusion of entirely new marine ecosystem

compartments, processes and associated outputs as required.

Here, we demonstrate the use of EMPOWER-1.0 in com-

bination with a simple illustrative nutrient–phytoplankton–

zooplankton–detritus (NPZD) model. It should be noted,

however, that EMPOWER-1.0 can be used to test and ex-

Geosci. Model Dev., 8, 2231–2262, 2015 www.geosci-model-dev.net/8/2231/2015/



T. R. Anderson et al.: EMPOWER-1.0 2233

amine the performance of simple and complex models alike.

Our choice of a simple ecosystem model is motivated by

the fact that simple models are conceptually straightforward

as well as being easy to set up and analyse. This study is

structured as follows. First, a brief history of slab models

in marine science is presented to illustrate the origin and

utility of these models as research tools in marine science.

The NPZD model is then described and implemented within

EMPOWER. The utility of EMPOWER as a testbed for un-

dertaking model parameterisation is next demonstrated by

a parameter adjustment exercise, specifically the fitting of

the NPZD model to observed seasonal cycles of chloro-

phyll and nutrients at each of four stations in diverse re-

gions of the world ocean. The sensitivity analysis is then

extended to model equations with a comparison of the per-

formance of different equations for calculating, first, daily

depth-integrated photosynthesis and, second, phytoplankton

and zooplankton mortality. Finally, the utility of slab mod-

els is discussed in context of ongoing contemporary marine

ecosystem modelling research.

2 Slab models: from pioneering studies to the present

day

In this section, we provide a history of slab modelling which

serves as an introduction to how these models are con-

structed, as well as to demonstrate that, despite their simplic-

ity, the simulations these models generate can be meaning-

ful and realistic. Models provide the theoretical basis for our

understanding of the dynamics of marine ecosystems. One

of the first applications of theory in biological oceanogra-

phy occurred around 80 years ago when scientists were in-

terested in the mechanisms driving the spring phytoplank-

ton bloom that is characteristic of many marine systems.

The basic theory as we know it today, whereby bloom ini-

tiation occurs as the water column stratifies, was proposed

in the early 1930s by Haaken H. Gran, a Norwegian botanist

(Gran, 1932; Gran and Braarud, 1935). Mathematical testing

of this proposal was essential in order to establish quantita-

tive merit, given the dynamic interplay between bottom-up

controls on phytoplankton via light and nutrients versus top-

down control by grazing. Following on from initial work by

Fleming (1939), it was Gordon Riley, a biological oceanog-

rapher based at the Bingham Oceanographic Laboratory in

the northeastern USA, who constructed a model of seasonal

phytoplankton dynamics for Georges Bank, a raised plateau

off the coast of New England, northeast USA (Riley, 1946),

a remarkable achievement at the time (Anderson and Gen-

tleman, 2012). The model had a single differential equation

for the rate of change of phytoplankton biomass, expressed

with terms for photosynthesis, respiration and grazing. Us-

ing a photosynthesis–irradiance (P -I ) curve based on his

own shipboard experiments, Riley developed a formula for

daily depth-averaged photosynthesis in the mixed layer that
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Figure 1. Forcing used by Riley (1946) in his model of George’s

Bank: (a) depths of euphotic zone and mixed layer; (b) diminution

in photosynthesis due to light limitation (LV ).

was derived from observed seasonal irradiance at the ocean

surface as calculated by atmospheric transmission by Kim-

ball (1928), measured light attenuation coefficients and a

nutrient limitation term. The seasonal cycle of mixed layer

depth (MLD) was imposed empirically, with calculated pho-

tosynthesis in the euphotic zone being diminished accord-

ingly when MLD exceeded that of the euphotic zone (Fig. 1).

Temperature was considered to affect net primary production

via regulation of respiration. Despite its simplicity, in both

biology and physics, Riley’s model successfully reproduced

the spring plankton bloom at Georges Bank, highlighting the

subtle interplay between growth and grazing in controlling

plankton stocks.

Although Riley’s model considered depth-averaged pho-

tosynthesis over the mixed layer, it could not be described as

a slab model per se because it did not account for fluxes of

material across the pycnocline. It was John Steele, a mathe-

matical marine biologist from Scotland, who took the next

step by experimenting with a dynamic ecosystem embed-

ded within multi-layer models (e.g. Steele, 1956), arguably

a coarser version of what is done today in the more com-

plex 1-D models. Steele’s experience with this model led

him to realise that much of the net effect of vertical gradi-

ents could be captured with just a few layers, and he fur-

ther simplified the physics to a two-layer sea in his study of

the plankton in the North Sea (Steele, 1958). The resulting

NPZ ecosystem was confined to the upper layer with a lower

layer that contained only nutrient, in fixed concentration. In-

puts of nutrients to the surface layer occurred due to mix-

ing, balanced by export via phytoplankton sinking and mix-

ing (Fig. 2). Steele had thus constructed the first slab model

of its kind although with this, as well as his later models

including those in his seminal work The Structure of Ma-

rine Ecosystems (Steele, 1974), he used a fixed, rather than

seasonally varying, mixed layer depth. Applying the model

to study the plankton of Fladen Ground and other regions

in the northern North Sea, Steele demonstrated good agree-

ment between the model and estimates of production from

observations. Through work such as this, Steele emphasised

that it is simplification that allows us to most easily address

the controlling factors in marine ecosystems. One of Steele’s
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Figure 2. Two-layer slab physics framework (adapted from Steele,

1974).

best-remembered findings, demonstrated again using simple

models, is that the form of the zooplankton closure term has

important consequences for ecosystem dynamics and export

flux (Steele and Henderson, 1992). This finding remains rel-

evant to modellers today and, indeed, we will examine model

sensitivity to zooplankton mortality in Sect. 4.4.

It was Geoff Evans and John Parslow who would make the

next major advance in the development of slab models with

their “model of annual plankton cycles” (Evans and Parslow,

1985). Following Steele, they opted for an NPZ ecosystem

embedded within the same two-layer framework with the

marine ecosystem restricted to the upper layer and a fixed nu-

trient concentration in the lower. Evans and Parslow provided

a more complete representation of the interaction of the ma-

rine ecosystem with its physical environment by allowing the

depth of the mixed layer to vary seasonally with direct im-

pacts on the model state variables. As the mixed layer deep-

ens, nutrients are entrained from below while phytoplank-

ton density is diluted because their surface layer biomass is

spread over a greater depth. Conversely, as the mixed layer

shallows, the concentrations of nutrients and phytoplankton

are unchanged although losses occur on a per unit area (m−2)

basis. As many zooplankton can swim, Evans and Parslow

assumed that they are able to avoid detrainment in a similar

manner to the assumptions of prior models (e.g. Steele, 1958;

Riley et al., 1949) in which case their concentration increases

as MLD decreases.

Evans and Parslow (1985) also took seasonal and daily

irradiance forcing into consideration, in combination with

depth integration of a non-linear P -I curve. As opposed to

previous studies that had used observations, variation in light

at the ocean surface was calculated from standard trigono-

metric/astronomical formulae (Brock, 1981), with transmis-

sion losses in the atmosphere as 70 % of cloud cover and

photosynthetically active radiation (PAR) as three-eighths of

total irradiance. Variation in light with time of day was as-

sumed to be triangular (Steele, 1962), permitting analytic

integration in time. A notable contribution of Evans and

Parslow’s (1985) paper is the appendix which provides the

equations required to construct a model subroutine to cal-

culate daily depth-integrated photosynthesis in a model layer

as a function of noon irradiance (PAR entering the layer from

above), day length, phytoplankton concentration, rate of light

extinction (Beer’s law) and parameters for maximum photo-

synthesis and initial slope that define the P -I curve.

In common with their predecessors, Evans and Parslow

were interested in the factors controlling the initiation of the

spring phytoplankton bloom, focussing on the role of ver-

tical mixing. Bloom initiation, they concluded, required a

low rate of primary production over winter, which is to be

expected in the North Atlantic due to deep mixed layers at

that time, and is also linked to coupling between phytoplank-

ton and grazers. The simplicity of the slab model was key

to their conclusions as articulated in their own words: “It is

worth emphasising the advantages of analysing simple mod-

els, and simplifying models until they can be analysed”. The

controls on phytoplankton dynamics in high-nutrient low-

chlorophyll (HNLC) areas such as the subarctic Pacific has

remained a topical issue ever since, in large part because lim-

itation by iron is also indicated (Martin et al., 1994; Coale

et al., 1996), but the role of grazing and the link between

phytoplankton–zooplankton coupling and mixed layer depth

remains firmly established as a key mechanism in these sys-

tems (Frost, 1987; Fasham, 1995; Chai et al., 2000; Smith Jr.

and Lancelot, 2004).

Perhaps the most famous slab modelling paper, published

5 years after Evans and Parslow (1985), is the study of ni-

trogen cycling in the Sargasso Sea by Fasham et al. (1990;

henceforth FDM90). It is by far the most highly cited marine

ecosystem model (Arhonditsis et al., 2006, noted that it had

accumulated 405 ISI cites by November 2005; this number

has increased to 758 as of May 2015). In terms of physical

structure, Fasham’s model used the same basic slab construct

as in Evans and Parslow (1985), with seasonally varying

mixed layer depth and irradiance forcing. The novel aspects

of FDM90 were instead related to additional complexity of

the ecosystem, expanding from a simple NPZ to explicitly

separate new and regenerated production by including state

variables for nitrate and ammonium (critical for calculating

the f ratio; Eppley and Peterson, 1979), as well as having

a simple microbial loop of dissolved organic nitrogen and

bacteria. Sinking detritus was also added as a state variable,

facilitating the prediction of export flux. The success of this

model was due to it being the first attempt to fully elucidate

the processes involved in the recycling of nitrogen in the eu-

photic zone, as well as the complimentary roles of zooplank-

ton and bacteria. The simplified physics of the model allowed

it to be run on PCs of that era and Fasham purportedly dis-

tributed the code on floppy disks, allowing other researchers

to run the model on their PCs.

The description of the marine ecosystem provided by

FDM90 has largely served as the foundation for marine

ecosystem modelling ever since. With the advent of increas-

ing computer power, as well as increasing interest in the

spatio-temporal behaviour of plankton systems, most mod-
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Table 1. Characteristics of published slab models.

Reference Location Structure MLD Irradiance Photosyn.

Evans and Parslow (1985)

Frost (1987)

Fasham et al. (1990)

Robinson et al. (1993)

Fasham (1995)

Matear (1995)

Hurtt and Armstrong (1996)

Popova et al. (1997)

Anderson and Williams (1998)

Spitz et al. (1998)

Fennel et al. (2001)

Natvik et al. (2001)

Schartau et al. (2001)

Spitz et al. (2001)

Flemish Cap,

subarctic Pacific

subarctic Pacific

Sargasso Sea

Pacific upwelling

subarctic Pacific,

North Atlantic

subarctic Pacific

Sargasso Sea

none (theoretical)

English Channel

Sargasso Sea

Sargasso Sea

Flemish Cap

Sargasso Sea

Sargasso Sea

NPZ

NP(Z)

2NPZDB (DOM)

P2Z

2NPZDB (DOM)

2NP2ZDB (DOM)

2NPR

NPZD

2NPZDB (DOM)

2NPZDB (DOM)

NPZD

NPZ

NPZ

2NPZDB (DOM)

clim.

clim.

clim.

f (winds)

clim.

clim.

clim.

hypothet.

clim.

clim.

clim.

model

1989–1993

1989–1993

astronomical

data

astronomical

astronomical

astronomical

data

astronomical

astronomical

astronomical

astronomical

astronomical

astronomical

astronomical

astronomical

E&P85

numeric

E&P85

numeric?

E&P85

E&P85

E&P85

E&P85

A93

E&P85

E&P85

E&P85

E&P85

E&P85

Hemmings et al. (2004) North Atlantic NPZ clim. data E&P85

Onitsuka and Yanagi (2005) Japan Sea NPZD,

2N2P3Z (DOM)

clim. data numeric

Findlay et al. (2006)

Mitra et al. (2007)

Mitra (2009)

Llebot et al. (2010)

Kidston et al. (2013)

None (theoretical)

North Atlantic

North Atlantic

Mediterranean Bay

Southern Ocean

NP

2NPZDB (DOM)

2NPZDB (DOM)

2N2PD (DOM)

NPZD

hypothet.

clim.

clim.

f (R no.)

model

none

astronomical

astronomical

astronomical

model

B&P05

E&P85

E&P85

numeric

E&P85

MLD: clim. (climatological from data); hypothet. (hypothetical); f (R no.) (function of Richardson number). Photosynthesis calculation (photosyn.): E&P85 (Evans and Parslow, 1985);

A93 (Anderson, 1993); B&P05 (Boushaba and Pascual, 2005).

elling studies are now undertaken in 1-D or 3-D physical

frameworks. Nevertheless, many slab modelling studies have

been published since FDM90 which follow the basic design

described above, or slight modifications thereof (Table 1). A

range of ecosystem models of varying complexity have been

incorporated within slab physics and applied to contrasting

sites throughout the world ocean. The basic physical con-

struction is similar in most cases consisting of a classic slab

structure with a seasonal cycle of mixed layer depth specified

from data and seasonal irradiance from standard trigonomet-

ric equations. Remarkably, Evans and Parslow’s (1985) equa-

tions for calculating daily depth-integrated photosynthesis

have prevailed and been used in most studies. A more sophis-

ticated calculation method was developed by Morel (1988,

1991) and a simplified form of this (Anderson, 1993) is ex-

amined in Sect. 4.3. The models in Table 1 have been used

for a diverse range of applications including studies of pa-

rameter optimisation (Spitz et al., 1998; Fennel et al., 2001;

Schartau et al., 2001; Hemmings et al., 2004), parameter sen-

sitivity analysis (Mitra, 2009; Mitra et al., 2007, 2014), phy-

toplankton bloom dynamics (Findlay et al., 2006), nutrient

cycling via organic and inorganic pathways (Llebot et al.,

2010), primary production in HNLC systems (Kidston et al.,

2013) and primary production and export flux in contrasting

regions (Fasham, 1995; Onitsuka and Yanagi, 2005).

3 Model description

We demonstrate the use of EMPOWER-1.0 using a simple

NPZD ecosystem model and forcing for four time series sta-

tions in the ocean. The code is readily adapted to incorpo-

rate other ecosystem models, including the relatively com-

plex models of the modern era, and/or forcing for other ocean

sites.

3.1 Slab setup and forcing

The model uses slab physics as per Evans and

Parslow (1985), namely a seasonally varying surface

mixed layer that contains the ecosystem positioned above

a deep homogeneous layer containing unchanging nutrient

and no plankton (Fig. 2). We have also included temperature

dependencies for the physiological rates in the ecosystem

model (see below). Our model was set up for four stations,

two in the North Atlantic (stations BIOTRANS, 47◦ N,

20◦W and India, 60◦ N, 20◦W) and two HNLC systems

(stations Papa in the North Pacific, 50◦ N, 145◦W and

KERFIX in the Southern Ocean, 50◦ 40′ S 68◦ 25′ E).

These stations were chosen because of their contrasting

environments, as illustrated by the differences in forcing

variables: seasonally varying MLD, irradiance (I ) and sea

surface temperature (T ) (Fig. 3), as well as deep nitrate (N0;

see below). Mixed layer depths were taken from the World

www.geosci-model-dev.net/8/2231/2015/ Geosci. Model Dev., 8, 2231–2262, 2015
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Figure 3. Model forcing for stations India (60◦ N, 20◦W), BIO-
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Ocean Atlas 2009 (WOA; Antonov et al., 2010; Locarnini

et al., 2010). In common with most previous slab modelling

studies, noon (peak daily) irradiance at the ocean surface is

calculated, for a given latitude as a function of time of year,

using standard trigonometric/astronomical equations. The

effect of clouds on atmospheric transmission was calculated

using the model of Reed (1977). The equations for irradiance

forcing are not usually provided as part of published model

descriptions but, for completeness, they are listed here in

Appendix A.

The bottom layer in most slab models is assumed to have

a fixed concentration of nutrient, N0. There is in reality a

gradient of nutrient with depth and this can be represented

empirically in slab models using simple functions of nutri-

ents versus depth (Frost, 1987; Steele and Henderson, 1993;

Fasham, 1995). We adopted this approach here for stations

BIOTRANS and India, using simple linear relationships with

depth (z):

N0(z)= aNz+ bN . (1)

The regression coefficients were fitted from WOA data

(Garcia et al., 2010) for subthermocline NO3 (z > 100 m).

Resulting values for aN and bN were 0.0174 and 3.91 for

station BIOTRANS and 0.0074 and 10.85 for station India.

There were no obvious relationships between N0 and depth

for the two HNLC stations and so mean (fixed) values of

26.1 and 14.6 mmol N m−3 were used for N0 for KERFIX

and Papa respectively.

P D 

N Z 

mortality 

grazing 

pellets 

mortality 
excretion 

growth 
remin. mixing 

mixing 

mixing 

mixing mortality 

Figure 4. Structure of the NPZD model.

3.2 Ecosystem model description

The NPZD ecosystem model we have implemented in EM-

POWER is presented in Fig. 4 with dissolved inorganic nitro-

gen (N ; the sum of nitrate and ammonium), phytoplankton

(P ), zooplankton (Z) and detritus (D) as state variables. It is

a simplification of the marine ecosystem inspired by that of

FDM90 with improved formulations for multiple-prey graz-

ing, plankton mortality, nutrient regeneration and other detri-

tal loss terms, as well as alterations to the parameterisation.

The equations are described below; model parameterisation

is described in Sect. 4.1. The phytoplankton equation is

dP

dt
= µPP−GP−mPP−mP2P

2
−
(wmix+H

′(t))P

H(t)
, (2)

where the terms are growth, grazing and non-grazing mor-

tality (linear and quadratic), physical losses due to mixing

across the bottom of the mixed layer, and dilution effects

of entrainment. H(t) is mixed layer depth (m) at time t and

H ′(t) denotes the rate of change of H when dH/dt is pos-

itive (dilution). As explained above, when dH/dt is nega-

tive the change in phytoplankton density due to detrainment

of mass from the mixed layer is exactly balanced by the in-

creasing phytoplankton density due to decreases in volume

and therefore detrainment does not alter the concentration

of remaining biomass. Variable µP is the vertically aver-

aged temperature-dependent daily growth rate, defined as the

product of a temperature-dependent maximum growth rate,

µmax
P (T ), and non-dimensional limitation terms for nutrients

and light, LN (N) and LI (I (t,z)):

µP = µ
max
P (T )LN (N)LI (I (t,z)). (3)

Note that µP is calculated on a daily basis averaging over

the time of day (t) and depth (z). Temperature and nutri-

ents are assumed to be uniformly distributed throughout the

mixed layer, in which case µP is

µP =
µmax
P (T )LN (N)

24H

24 h∫
0

H∫
0

LI (I (t,z))dzdt. (4)
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Figure 5. Photosynthesis–irradiance curves with parameter set-

tings Vmax
P
= 2.5 g C (g chl)−1 h−1 and α = 0.15 g C (g chl)−1 h−1

(W m−2)−1; Smith function (Eq. 7) and exponential function

(Eq. 8).

With the assumption of balanced growth, µmax
P (T ) is equal

to the equivalent maximum photosynthetic rate, V max
P (T ).

The temperature dependence of photosynthesis is from Ep-

pley (1972):

V max
P (T )= V max

P (0)1.066T , (5)

where V max
P (0) is photosynthesis at 0◦ C. Note that this ex-

ponential relationship is equivalent to a Q10 of 1.895.

The usual way NPZD-type models characterise nutrient

limitation of phytoplankton growth rate by nutrients,LN (N),

is calculated as a Michaelis–Menten (or Monod) relation-

ship:

LN (N)=
N

kN +N
, (6)

where kN is the half-saturation constant.

The calculation of LI is the most mathematically compli-

cated aspect of characterising phytoplankton growth in this

model as it takes into consideration both seasonal and diur-

nal patterns of irradiance arriving at the ocean surface (I0),

attenuation of irradiance with depth and photosynthesis as

a function of light intensity. Light is assumed to vary with

depth according to Beer’s law (I = I0 exp(−kPARz)), where

kPAR is the attenuation coefficient, and photosynthesis cal-

culated using a P -I curve. The daily depth-average photo-

synthetic rate is calculated over the course of the day using

an assumed daily variation of light, from which the daily av-

erage is derived. The user of EMPOWER is provided with a

choice between two P -I curves, a Smith function (Eq. 7) and

an exponential function (Eq. 8) (Fig. 5):

VP =
αIV max

P√
(V max
P )2+α2I 2

, (7)

VP = V
max
P (1− exp(−αI/V max

P )). (8)
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Figure 6. Triangular versus sinusoidal patterns of diel irradiance

illustrated for a 12 h day and noon irradiance of 200 W m−2.

Integration with depth (inner integral of Eq. 4) can be cal-

culated analytically for either of the two P -I curves; equa-

tions are provided in Appendix B. The default method of han-

dling the diurnal variation in irradiance at the ocean surface

(outer integral of Eq. 4) is to do a numeric integration. The

user may choose between assuming either a sinusoidal (Platt

et al., 1990) or triangular (Steele, 1962; Evans and Parlsow,

1985) pattern of irradiance throughout each day, from sunrise

to sunset and peaking at noon (Fig. 6).

Analytic depth integrals require a Beer’s law attenuation

of light within the water column characterised by a single

attenuation coefficient, kPAR. The simplest assumption, pro-

vided as the first of two options in EMPOWER, is that kPAR

is the sum of attenuation due to water and phytoplankton,

parameters kw and kc, respectively:

kPAR = kw + kcP. (9)

Parameters kw and kc are often assigned values of 0.04 and

0.03 m2 (mmol N)−1 respectively (e.g. FDM90); these values

are used here.

The assumption of a single mixed layer value of kPAR is

questionable because in reality the value of kPAR varies with

depth as a result of the changing spectral properties of the

irradiance field. Red light is mostly absorbed by water in

the upper few metres while blue penetrates deepest, with

relatively efficient absorption by chlorophyll at both wave-

lengths. Based on a complex treatment of submarine light

(Morel, 1988), a piecewise approach to light attenuation was

developed by Anderson (1993) with different values, kPAR,i ,

with i = 1 for depth range 0–5 m, i = 2 for depth range 5–

23 m and i = 3 for depths> 23 m, in each case kPAR(i) is re-

lated to pigment (chlorophyll) concentration, C:

kPAR,i =b0,i + b1,iC
1/2
+ b2,iC+ b3,iC

3/2

+ b4,iC
2
+ b5,iC

5/2. (10)

This approach to light attenuation is provided as the de-

fault option for use in EMPOWER. The values of the poly-

nomial coefficients (b0,i − b5,i) are listed in Table 2.
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Table 2. Coefficients for use in the Anderson (1993) calculation of

light attenuation (Eq. 10).

First layer (0–5 m) Second layer (5–23 m) Third layer (> 23 m)

b0,1 = 0.13096

b1,1 = 0.030969

b0,2 = 0.041025

b1,2 = 0.036211

b0,3 = 0.021517

b1,3 = 0.050150

b2,1 = 0.042644 b2,2 = 0.062297 b2,3 = 0.058900

b3,1 =−0.013738 b3,2 =−0.030098 b3,3 =−0.040539

b4,1 = 0.0024617

b5,1 =−0.00018059

b4,2 = 0.0062597

b5,2 =−0.00051944

b4,3 = 0.0087586

b45,3 =−0.00049476

The diurnal variation in light at the ocean surface over the

course of a day may be reasonably approximated by a sinu-

soidal function that is symmetric about noon irradiance (Platt

et al., 1990). Further simplification is possible by use of a lin-

ear model, i.e. use of a triangular model centred at noon (e.g.

Steele, 1962; Evans and Parlsow, 1985) because this simpli-

fies the time integration. It should be noted here that despite

Evans and Parslow’s (1985) claim that differences between

the triangular and sinusoidal approximations are minimal if

the area under the curve is the same, they did not make the

“equivalent area” adjustment to their formula, nor is their

statement generically true (i.e. it depends on the peak light in-

tensity, the attenuation of light with depth and the non-linear

P -I relationship).

In EMPOWER, the default method of handling the diurnal

variation in irradiance at the ocean surface is to do a numeric

integration. Undertaking a numerical time integral involves

computational cost and two empirical methods (Evans and

Parslow, 1985; Anderson, 1993) have been published that

provide analytic calculations (i.e. pre-determined formulae)

for daily depth-integrated photosynthesis in a water column.

Both are provided as options for use in EMPOWER and

have the advantage of faster run time. The first of the two

EMPOWER options is the depth-averaged light-dependent

calculation of growth of Evans and Parslow (1985) which

assumes a triangular pattern of daily irradiance, Beer’s law

for light attenuation (Eq. 9) and a Smith function as the P -

I curve (Eq. 7). It has been a popular choice in previous

slab modelling studies (Table 1). The second option is from

Anderson (1993), which was developed as an empirical ap-

proximation to the spectrally resolved model of light attenua-

tion and photosynthesis of Morel (1988) used in combination

with the polynomial method of integrating daily photosyn-

thesis of Platt et al. (1990). It assumes a sinusoidal pattern

of irradiance through the day, a piecewise Beer’s law light

attenuation (Eq. 10) and an exponential function as the P -

I curve (Eq. 8). Parameter α, the initial slope of the P -I

curve, is also spectrally dependent. The method of Ander-

son (1993) calculates the variation of α with depth as a func-

tion of chlorophyll in the water column. Daily photosynthe-

sis is then calculated using a polynomial approximation. The

methods for calculating daily depth-integrated photosynthe-

sis of Evans and Parslow (1985) and Anderson (1993) are

non-trivial and, for completeness, the equations are supplied

in Appendix C.

Grazing by zooplankton is assumed to be on both phyto-

plankton and detritus. This choice was made in part to illus-

trate how to implement ingestion on multiple prey types, as

such functions are used for more complex models (e.g. when

there are multiple phytoplankton size classes or functional

types and/or omnivory by zooplankton). Many multiple-

grazing formulations, however, comprise questionable as-

sumptions about zooplankton feeding behaviour (Gentleman

et al., 2003). For example, the multiple-prey grazing formula

used in FDM90 is classified as an active switching response

(Gentleman et al., 2003) which can display anomalous be-

haviour such as suboptimal feeding (i.e. ingestion rates de-

creasing when prey availability increases). We have therefore

opted to improve upon Fasham’s choice by using a different

multiple-prey response, but one that is nevertheless common-

place in the literature. Specifically, we have adopted a passive

switching response where density dependence of the prey

preferences arises due to inherent differences in the single-

prey responses (see Gentleman et al., 2003). This Sigmoidal

(or Holling Type 3) response is characterised as (Fig. 7)

GP =

(
Imaxϕ̂PP

k2
Z + ϕ̂PP + ϕ̂DD

)
Z,

ϕ̂P = ϕPP,ϕ̂D = ϕDD, (11)

GD =

(
Imaxϕ̂DD

k2
Z + ϕ̂PP + ϕ̂DD

)
Z, (12)

where the terms in parentheses are the zooplankton spe-

cific ingestion rates IP and ID respectively. This formula-

tion implies that the single-prey responses for both phyto-

plankton and detritus are each sigmoidal (Type 3). Param-

eter Imax is the maximum specific grazing rate, which is the

same for both phytoplankton and detritus and equates to their

single-prey maximum ingestion rates. Although parameters

ϕP and ϕD are often called preferences in the literature, the

actual prey preferences associated with this response (i.e. rel-

ative amount in the diet as compared to the environment)

are density-dependent, with the relative preference for phy-

toplankton to detritus determined by prefP :D =
ϕPP
ϕDD
=

ϕ̂P
ϕ̂D

.

The ϕ parameters actually relate to the half-saturation con-

stants associated with the single-prey functional responses.

Specifically, ϕP =
k2
Z

k2
P

, where kP is the half-saturation value

for the Type 3 single-prey response for ingestion of phyto-

plankton, and ϕD is defined similarly. Parameter kZ , which

is often referred to as the half-saturation value in the litera-

ture, is actually an arbitrary parameter (i.e. this formulation is

over-parameterised; see Gentleman et al., 2003) whose value

determines the assumed single-prey half-saturation constants

based on choices for the ϕ parameters.

The Sigmoidal response assumes an interference effect of

alternative prey in that as detritus increases, ingestion of phy-
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Figure 7. Contours of the zooplankton specific ingestion rates (IP ,

ID) versus densities of the two prey types (P : phytoplankton, D:

detritus) as characterised by the sigmoidal grazing response (Eqs.

11, 12) using parameters Imax = 1 d−1, kZ = 0.52 mmol N m−3,

ϕP = 0.67 and ϕD = 0.33. Upper panels illustrate assumed inter-

ference effect of one prey type over another, e.g. for a given P ,

increasing D reduces IP . The lower panel illustrates assumed opti-

mal feeding (i.e. total ingestion, Itot, always increases with increase

in P or D) and the benefit of generalism (i.e. increase in Itot due to

consumption of P and D vs. just P ).

toplankton decreases (with the same interaction for phyto-

plankton and ingestion of detritus). This interference effect

is not so great as losing the benefit of generalism, i.e. total

ingestion always increases for an increase in total prey den-

sity. The non-equal preferences reduce the interference effect

for phytoplankton, i.e. the contours in the first panel of Fig. 7

are more vertical than for equal preferences. The corollary

effect is that the increased ingestion by consuming both phy-

toplankton and detritus versus just phytoplankton is reduced

as compared to when prey have equal preferences.

Regarding phytoplankton non-grazing mortality, FDM90

has the usual choice of a linear term although non-linear

approaches are also possible, e.g. the use of a Michaelis–

Menten saturating function by Fasham (1993). We opted for

the more flexible approach of using both linear and non-

linear terms (Yool et al., 2011, 2013a). The former may ac-

count for metabolic losses or natural mortality. The use of an

additional non-linear term represents density-dependent loss

processes, notably mortality due to infection by viruses. The

abundance of viruses is highly dependent on the density of

potential host cells (e.g. Weinbauer, 2004) and, as reviewed

by Danovaro et al. (2011), there is “compelling” evidence

that, at least in some instances, viruses are responsible for

the demise of phytoplankton blooms based on observations

of high proportions (10–50 %) of infected cells (e.g. Bratbak

et al., 1993, 1996). A quadratic form was used for the non-

linear mortality term (e.g. Kawamiya et al., 1995; Oschlies

and Schartau, 2005) and all phytoplankton non-grazing mor-

tality losses were allocated to detritus.

The equation for rate of change of zooplankton density is

dZ

dt
=(βkN (GP +GD))− (mZZ+mZ2Z

2)

−
(wmix+H

′(t))Z

H(t)
, (13)

where the terms are growth, mortality (linear and quadratic)

and losses due to mixing and changing MLD. Zooplankton

growth can be described as the product of gross growth effi-

ciency (GGE) and intake, where GGEs are typically between

0.2 and 0.3 (Straile, 1997). Gross growth efficiency is itself

the product of absorption efficiency, β (more commonly, but

incorrectly, known as assimilation efficiency; e.g. see Mayor

et al., 2011) and net production efficiency, kNZ. Splitting into

these separate parameters (Table 3) permits three-way frac-

tionation of intake between egestion (i.e. faecal pellet pro-

duction, 1-β), growth (β · kNZ =GGE; first term in Eq. 13)

and excretion (β(1− kNZ)).

A variety of formulations exist in ecosystem models to de-

scribe zooplankton mortality and the appropriate functional

form has been and continues to be a hotly debated topic

(Steele and Henderson, 1992; Edwards and Yool, 2000; Mi-

tra et al., 2014). Most common are the linear and quadratic

terms, although some authors have chosen to employ other

non-linear functions (e.g. Fasham, 1993 used a Michaelis–

Menten relationship). As with phytoplankton, we used both

linear and quadratic non-linear terms (Yool et al., 2011). The

linear term represents density-independent natural mortality,

whereas the quadratic term is considered to be due to preda-

tion by carnivores (whose population tracks that of the zoo-

plankton). The different sources of mortality result in dif-

ferent fates for these terms. Loss from natural mortality is

allocated to modelled detritus, which implies a broader size

class of modelled particulates (and therefore higher sinking

rates) than when just phytoplankton death contributes to this

variable.

The fate of the predation-related mortality is less obvi-

ous because the metabolic activity of higher predators re-

sults in ingested material being converted into dissolved nu-

trients as well as larger particulates (e.g. fecal pellets and

death). Moreover, the higher predators may export mate-

rial from the local region with migration. FDM90, along

with a suite of follow-on models, therefore chose to allo-

cate predation-related zooplankton mortality between nutri-

ents (ammonium and DON, attributed to excretion by higher

predators) and material that is immediately exported from

the system (e.g. attributed to fast-sinking detritus generated

by higher predators). Similarly, Steele and Henderson (1992)

also allocated zooplankton mortality to export. Nevertheless,

many past and recently published marine ecosystem mod-

elling studies allocate all of zooplankton mortality to de-

tritus (Oschlies and Schartau, 2005; Salihoglu et al., 2008;

Hinckley et al., 2009; Ye et al., 2012). We argue, however,
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that this is not necessarily realistic given that detrital parti-

cles related to higher predators are larger and therefore even

faster-sinking than that produced by the modelled plankton.

We have therefore here adopted to follow the sage approach

of the model pioneers and assume that the predation-related

mortality represented by our quadratic term is instantly ex-

ported and thereby entirely lost from the surface mixed layer

of the model. As with phytoplankton, zooplankton are sub-

ject to changes in concentration via mixing and changes in

MLD.

The equation for the rate of change of dissolved inorganic

nitrogen (DIN) density is

dN

dt
=−µPP +β(1− kNZ)(GP +GD)

+mDD+
(wmix+H

′(t))(N0−N)

H
. (14)

DIN is taken up by phytoplankton (first term) and, via the

food web, regenerated with the second and third terms in

Eq. (14) representing excretion by zooplankton and reminer-

alisation of detritus respectively. The fourth term represents

the net transport due to mixing (i.e. supply by the deep water

and loss from the surface layer). The last term represents the

net effect of volume changes, i.e. increases in DIN density

due to supply of deep water nutrients through entrainment

and decreases in DIN density due to volume increases asso-

ciated with entrainment.

Finally, the detritus equation is

dD

dt
=mPP +mP 2P

2
+mZZ+ (1−β)(GP +GD)−GD

−mDD−
(wmix+H

′(t)+ vD)D

H
. (15)

Detritus is produced by phytoplankton mortality, zoo-

plankton natural mortality (linear term) and as zooplankton

egestion (faecal pellet production). It is lost by zooplankton

grazing and is also remineralised at a constant rate, mD . De-

tritus is mixed and subject to changes via the seasonal cy-

cle of MLD in the same manner as phytoplankton and zoo-

plankton (terms six and seven), and also experiences losses

due to gravitational sinking (last term). This occurs at rate

vD (m d−1) and provides direct export of particulate organic

matter to the layer below (where it is implicitly remineralised

back to DIN).

The first results Sections (4.1, 4.2) are devoted to param-

eterising the model, in the first instance, for station BIO-

TRANS and a detailed description of values assigned to

model parameters is provided therein.

3.3 Setup in R

We have chosen to code our model in the R programming

language which can be readily downloaded for free over the

Internet. Input and output files are in ASCII text (.txt) for-

mat, avoiding the use of proprietary software. The structure

of the code is designed to be transparent, where possible us-

ing conventional syntax common to different programming

languages such as the use of loops and block IF statements.

Where possible, we have followed what we consider to be

best practice in developing the code, which includes the fol-

lowing.

i. Creation of a fixed segment of core code that handles the

numerical integration, as well as writing to output files.

Being fixed, this segment does not require alteration in

the event of changes to the ecosystem model formula-

tion, nor indeed if an entirely new ecosystem model is

implemented.

ii. The ecosystem model formulation, i.e. the specification

of the terms in the differential equations and calcula-

tion of their rates of change, is handled by a function

(FNget_flux) that is external to the core code.

iii. The specification of parameter values and run charac-

teristics (e.g. time step, run duration, as well as flags for

choices between different formats for export to output

files, choice of ocean location and for different param-

eterisations of key processes) is via text files that are

read in at the onset of each simulation. Thus, there is

no need to enter or alter the model code when changing

parameter values or other model settings.

iv. When a model run finishes, the summed annual fluxes

associated with each term in the differential equations is

displayed on the computer screen along with a report as

to whether mass balance is achieved for each state vari-

able (over the last year of simulation). Basic checking

of mass balance is useful for ensuring that the model

equations are error-free.

v. Regimented layout for clarity with extensive comment-

ing throughout.

The R programming language is supported by various li-

braries that can be accessed via the Internet. One such library

is for solving ordinary differential equations (Soetaert et al.,

2010). Using this library has the advantage of minimising the

length of the code and offers flexibility in terms of a range of

numerical methods. On the other hand, its implementation

requires that various conventions are adhered to and these

can be restrictive when it comes to producing ancillary code,

e.g. the formatting and export of output files. As such, we

opted to code the numerical solution of the ordinary differ-

ential equations (ODEs) manually within the core code of the

model for the following reasons.

i. It offers full transparency for the interested user who

wishes to see the method of integration.

ii. The use of manual code makes it considerably easier

to export chosen variables and fluxes to output files in

desired formats and frequencies.
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Functions 

FNget_flux: calculates rates of change of terms in the differential equations, 
calling other functions to calculate irradiance, photosynthesis, etc.  

Other functions to calculate irradiance, photosynthesis, etc 

Setup 

Read in from files: 
1. NPZD_parameters.txt: parameter values 
2. NPZD_extra.txt: initial conditions, location, run characteristics 

Set up forcing: MLD, deep nitrate, cloud fraction, etc. 

Set variables specific to model: no. of state variables, auxiliary variables, 
Etc. Set initial conditions 

Permanent code 

Basic settings: set up matrices to store fluxes and outputs, etc. 

Write initial values of state variables to file out_statevars.txt 

Time loop: years 

Time loop: days of year 

Time loop: time steps over day 

Calculate flux terms in differential equations: FNget_flux 

Update state variables 

Write to output files: out_statevars.txt, out_aux.txt, out_fluxes.txt 

End time loops 

Print summed annual fluxes to screen 

Plot graphs on screen 

Figure 8. Structure of the model code.

iii. In our case, the user is given the choice between two in-

tegration methods, Euler and fourth order Runge Kutta

(RK4). These methods, particularly the latter, are en-

tirely sufficient for the numerical task at hand and the

coding of them is straightforward.

iv. By using elementary syntax, the code can be easily al-

tered or converted to other programming languages.

v. The code is stand alone and not subject to reformulation

in the event of future changes in subroutine libraries.

The structure of the code is shown in Fig. 8. The func-

tions come first, appearing prior to the core code in R. The

key function call is FNget_flux which contains the ecosys-

tem model specification (Sect. 3.2). The rate of change is

calculated for each term in the differential equations and al-

located to a 2-D array (flux no., state variable no.) which

is then passed back to the core (permanent) code for pro-

cessing. Other functions are FNdaylcalc (calculates length

of day; Eq. A7), FNnoonparcalc (noon irradiance, PAR;

Eq. A5), FNLIcalcNum (undertakes numerical (over time)

calculation of daily depth-integrated photosynthesis), FNLI-

calcEP85 (calculates LI using the equations of Evans and

Parslow, 1985; Appendix C1), FNaphy (calculates chloro-

phyll absorption, effectively parameter α, in the water col-

umn after Anderson, 1993; Eq. C14) and FNLIcalcA93 (cal-

culates LI using the equations of Anderson, 1993; Ap-

pendix C2).

Model setup comes next. Parameter values are read in

from file NPZD_parms.txt. Simulation characteristics are

then read in from file NPZDextra.txt. These include

i. initial values for state variables (N,P,Z,D);

ii. run duration (years) and time step;

iii. choice of station: BIOTRANS, India, Papa, KERFIX;

iv. choice of photosynthesis calculation: numeric (default),

Evans and Parslow (1985) or Anderson (1993);

v. choice of integration method: Euler or RK4;

vi. choice of output characteristics: none, last year only or

whole simulation, and a frequency of once per day or

every time step.

Model forcing for the chosen station of interest is then as-

signed. Monthly values of MLD and sea surface temperature

are read in and subject to linear interpolation in order to de-

rive daily forcing. Other forcing variables are also set: lati-

tude, deep nitrate (N0; Eq. 1) and cloud fraction. At the end

of the setup section there are a few lines of code that need

to be altered if the ecosystem model is changed. These lines

tell the computer how many state variables the model has, the

maximum number of flux terms associated with any one state

variable and the maximum number of auxiliary variables to

be stored for writing to output files.

An advantage of this structure is that an initial section

of customisable code is followed by a section of permanent

code that does not require adjustment in the event of changes

to the equations that describe the ecosystem model, or in-

deed if a completely new ecosystem model is to be used. This

code sets up a series of matrices to store fluxes and outputs

and then integrates the model equations over time. State vari-

ables are updated and results exported to three output files:

out_statevars.txt (state variables), out_aux.txt (chosen auxil-

iary variables) and out_fluxes.txt (all the terms in the differ-

ential equations). These text files are readily imported to, for

example, Microsoft Excel.

Results are plotted graphically on the computer screen at

the completion of each simulation run. The graph plotting

code is necessarily model specific and needs to be updated

by the user as required. R is a user friendly programming

language in this regard and the code provided should be suf-

ficient for the user to incorporate extra variables with ease.

Finally, a user guide is provided in Appendix D, outlining

how to set up R, run the code, a summary of input and out-

put files, and guidance on considerations when altering the

ecosystem code and/or forcing.
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4 Results

Model results are presented in four sections. First, a simula-

tion is shown for station BIOTRANS using parameters taken

from the literature (Sect. 4.1). This station is chosen as our

primary focus, inspired by the North Atlantic Bloom Experi-

ment in 1989 as part of JGOFS (the Joint Global Ocean Flux

Study; e.g. Ducklow and Harris, 1993; Lochte et al., 1993).

It exhibits the characteristic spring blooming of phytoplank-

ton of temperate latitudes, followed by relatively oligotrophic

conditions over summer, and has been the subject of previous

work using slab models (Fasham and Evans, 1995). Param-

eter tuning is then undertaken to fit all four ocean time se-

ries stations, BIOTRANS, India, Papa and KERFIX, to data

for chlorophyll and nitrate at each site (Sect. 4.2). Moving

on from the calibration of parameters, structural sensitivity

analysis is then carried out by examining model sensitivity to

equations for the calculation of daily depth-integrated photo-

synthesis (Sect. 4.3) and mortality terms for phytoplankton

and zooplankton (Sect. 4.4).

The model is compared to seasonal data for chlorophyll

and nitrate within the mixed layer, for each station. Nitrate

data are climatological, from World Ocean Atlas 2009 (Gar-

cia et al., 2010), as is the model forcing in terms of mixed

layer depths and irradiance. Regarding chlorophyll, data are

SeaWiFS (Sea-Viewing Wide Field-of-View Sensor) 8-day

averages (O’Reilly et al., 1998), for which we had access to

years 1998–2013. Averaging data across years to provide a

climatological seasonal cycle of chlorophyll is not meaning-

ful as key features, such as the spring phytoplankton bloom,

are smoothed out because the bloom timing is variable be-

tween years. A characteristic year was therefore chosen for

each station by firstly converting the data to log(chlorophyll),

then calculating mean log(chlorophyll) for each year and fi-

nally selecting the median year (an odd number of years is re-

quired, so we used 1998–2012. The resulting year selections

were 2002, 1998, 2007 and 2006 for stations BIOTRANS,

India, Papa and KERFIX respectively. The entire data sets

are shown with the multiple years overlaid in Fig. 9, with

data for the selected median year highlighted.

It is not our objective here to provide thorough quantita-

tive assessment of different model simulations in terms of

objective quantification of model–data misfit but, rather, to

demonstrate the utility of EMPOWER as a testbed for model

evaluation. Different ecosystem models and associated data

sets will necessarily require different skill metrics and so a

lengthy description and use of quantitative metrics is not ap-

propriate here. Very often anyway, as is the case here, vi-

sual inspection of model–data misfit is sufficient to determine

the best options for model formulation/parameterisation. If

quantitative methods are required, these are readily accessed

from the literature (e.g. Lewis and Allen; 2009; Lewis et al.,

2006).
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Figure 9. SeaWiFS chlorophyll data (mg m−3) for each of the four

stations, years 1998–2013 overlaid, with selected median year (see

text) highlighted.

4.1 Parameter initialisation: station BIOTRANS

Adjustment of parameters is a perennial problem for mod-

ellers. Parameters can be set from the literature, sometimes

directly on the basis of observation and experiment, but the

usual starting point is to take values from previously pub-

lished modelling studies. Almost inevitably, however, the re-

sulting simulations will show mismatch with data and param-

eters are usually selected for adjustment (tuning) to improve

the agreement with data. One option is to use objective tun-

ing methods, such as the genetic algorithm or adjoint method

in which many or all of the model parameters are varied si-

multaneously in order to try and find a best fit solution to data

(e.g. Friedrichs et al., 2007; Record et al., 2010; Ward et al.,

2010; Xiao and Friedrichs, 2014). The advantage is objec-

tivity, but difficulties include sloppy parameter sensitivities

(parameters compensate for each other), different values of

model parameters may be similarly consistent with the data

(the problem of identifiability), exploration of a huge param-

eter space may be required and local minima in misfit param-

eter space can make it difficult to find the true global mini-

mum (Slezak et al., 2010). It is usually the case that models

are underdetermined by data anyway (Ward et al., 2010), i.e.

there are insufficient data (in terms of absolute amount and/or

different types of data) to adequately constrain parameter val-

ues. And of course, objective methods require expertise, time

and computing resources.

Modellers more often than not carry out parameter adjust-

ment by varying values of chosen parameters one at a time

until satisfactory convergence with data is achieved. The skill

is in deciding which parameters to vary. In principle, sensi-

tivity analysis can be of help in this regard in that sensitive

parameters can be identified and selected for adjustment if

they can be justifiably altered (i.e. there is uncertainty regard-
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ing their value). Here, we will demonstrate the use of EM-

POWER for model calibration. Parameter sets will be derived

for the four stations, BIOTRANS and India in the North At-

lantic and the HNLC stations Papa (subarctic North Pacific)

and KERFIX (Southern Ocean). The ecosystem model we

have presented uses the NPZD structure in combination with

up-to-date formulations for key processes such as photosyn-

thesis, grazing and mortality. As such, it has not been previ-

ously published and so there is no readily available complete

set of parameter values to draw upon. Using our experience,

we chose appropriate parameter values from the literature

and adjusted others to give a good fit with the data for sta-

tion BIOTRANS. This result is presented below along with

a discussion of how we went about achieving this parameter

set. Working from this parameter set, tuning of parameters is

then undertaken to fit the other stations to the data.

Station BIOTRANS was previously modelled by Fasham

and Evans (1995) and we used this publication as a start-

ing point for the assignment of some of the parameter values

(note that we opted for the second of two optimisation so-

lutions in this reference). Other parameters were otherwise

assigned values from the literature where possible and/or se-

lected as a best guess. The resulting parameter set, along with

adjusted (tuned) values (see below), is shown in Table 3.

Photosynthetic parameters, V max
P (maximum rate) and α

(initial slope of the P -I curve) are geographically vari-

able, in part due to temperature (Harrison and Platt, 1986;

Cullen, 1990; Platt et al., 1990; Rey, 1991; Marañón and

Holligan, 1999; Bouman et al., 2000; Huot et al., 2013).

We based parameters V max
P (0) (the maximum rate of pho-

tosynthesis at 0◦ C) and α (initial slope of the P -I curve)

on the mean of values for polar waters provided in Ta-

ble 2 of Rey (1991), i.e. V max
P (0)= 2.5 g C (g chl)−1 h−1

and α = 0.034 g C (g chl)−1 h−1 (µE m−2 s−1)−1. Similar

values were recorded more recently in the Beaufort

Sea by Huot et al. (2013). Converting units, param-

eter α is 0.15 g C (g chl)−1 h−1 (W m−2)−1 (1 W m−2
=

4.55 µE m−2 s−1, based on the spectral distribution of white

light given in Anderson, 1993). Note that photosynthetic pa-

rameters are specified per unit phytoplankton biomass ex-

pressed as chlorophyll, requiring unit conversion. The Red-

field C :N molar ratio of 6.625 is the obvious choice to con-

vert between C and N. Carbon to chlorophyll ratios are more

variable and a value of 50 g C (g chl)−1 has previously been

used in modelling studies (e.g. Fasham et al., 1990). How-

ever, C : chl ratios are known to vary widely in response to

ambient conditions. The recent study of Sathyendranath et

al. (2009) found that, in the North Atlantic, the ratio typically

vary between 50 and 100 g C (g chl)−1 and so here we use an

intermediate value of 75 g C (g chl)−1 (parameter θchl). Re-

maining phytoplankton parameters are kN , 0.85 mmol N m−3

(Fasham and Evans, 1995), mP , 0.02 d−1 (Yool et al., 2011,

2013a), and mP 2, 0.025 (mmol N m−3)−1 d−1 (Oschlies and

Schartau, 2005).

Zooplankton parameters Imax and kZ were assigned di-

rectly from Fasham and Evans (1995) with values of 1.0 d−1

and 0.86 mmol N m−3 respectively. When it comes to cal-

culating growth, the assimilation efficiency used by Fasham

and Evans (1995) is in fact a growth efficiency whereas our

use of absorption efficiency (parameter β) is more in keep-

ing with contemporary zooplankton modelling (e.g. see An-

derson et al., 2013) and refers to the fraction of material ab-

sorbed across the gut. It is multiplied by net production effi-

ciency (parameter kNZ) to give growth efficiency. Values of

0.69 and 0.75 were assigned to parameters β and kNZ re-

spectively (Anderson, 1994; Anderson and Hessen, 1995).

Zooplankton ought to have a strong grazing preference for

phytoplankton and so the preference value (parameter ϕP ) of

0.12 used by Fasham and Evans (1995) seems unreasonably

low. We instead assigned values of 0.67 and 0.33 for param-

eters ϕP and ϕD , the same ratio of the equivalent preferences

used in Fasham (1993). Thus, if kZ = 1 mmol N m−3, this

implies that the phytoplankton single-prey half-saturation is

1.22 mmol N m−3 and the detritus single-prey half-saturation

constant is 1.75 mmol N m−3. The implied single-prey half-

saturation constants change to 1.05 and 1.50 mmol N m−3 re-

spectively when kZ = 0.86 mmol N m−3. Mortality parame-

ters mZ and mZ2 were assigned values of 0.02 d−1 (Yool et

al., 2011, 2013a) and 0.34 (mmol N m−3)−1 d−1 (Oschlies

and Schartau, 2005) respectively.

Detritus is composed of a range of sinking material includ-

ing faecal pellets and marine snow of between 5 and several

100 m d−1 (Wilson et al., 2008), as well as slow-sinking ma-

terial that is likely to be remineralised in the upper water

column (Riley et al., 2012). A typical sinking rate used in

ecosystem models is between 5 and 10 m d−1 (e.g, Fasham

et al., 1990; Oschlies and Garcon, 1999; Anderson and Pon-

daven, 2003; Llebot et al., 2010; Kidson et al., 2013). We

used a value for VD of 6.43 m d−1 (Fasham and Evans, 1995).

Note also that the detritus produced by quadratic zooplank-

ton mortality is assumed to be very fast-sinking and is in-

stantly exported from the upper mixed layer. The remineral-

isation rate of detritus (parameter mD) was set to 0.06 d−1

(Fasham and Evans, 1995). Finally, parameter wmix was set

to 0.13 m d−1 (Fasham and Evans, 1995).

Choices have to be made regarding the settings for cal-

culating daily depth-integrated photosynthesis. A sinusoidal

pattern of daily irradiance was set as default for this purpose,

with a numeric integration over time of day. A Smith func-

tion was chosen as the P -I curve (Eq. 7) as this permits

a straightforward analytic depth integral for photosynthesis

(Appendix B). Photosynthesis at depth can be vertically in-

tegrated analytically when light extinction in the water col-

umn is described by Beer’s law with a constant coefficient.

As default, we use the piecewise Beer’s law treatment of An-

derson (1993) in which the water column is divided into three

depth zones (0–5, 5–23 and> 23 m) and a separate extinction

coefficient calculated for each as a function of chlorophyll

(Eq. 10). Although this approach is more complicated than
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Table 3. Model parameters. Fitted model solutions for stations BIOTRANS, India, Papa and KERFIX. The initial (unfitted) parameter

guesses for BIOTRANS were as for the fitted solution, except that parameters mP and kZ were tuned from initial settings of 0.02 d−1 and

0.86 mmol N m−3 respectively (see text and footnotes).

Parameter Meaning Unit BIOTRANS India Papa KERFIX

Vmax
P

(0)α max rate photosynthesis 0◦ C

initial slope of P -I curve

g C (g chl)−1 h−1

g C (g chl)−1 h−1

(W m−2)−1

2.5a

0.15a
2.5

0.15

1.25b

0.075b
1.25b

0.075b

kN half-sat. constant: N uptake mmol N m−3 0.85c 0.85 0.85 0.85

mP
mP 2

Imax

kZ
ϕP
ϕD
βZ
kNZ

mZ
mZ2

vD
mD
wmix

θchl

phyto. mortality (linear)

phyto. mortality (quadratic)

zoo. max ingestion rate

zoo. half-saturation for intake

grazing preference: P

grazing preference: D

zoo. absorption efficiency

zoo. net production efficiency

zoo. mortality (linear)

zoo. mortality (quadratic)

detritus sinking rate

detritus remineralisation rate

cross-thermocline mixing

C to chlorophyll ratio

d−1

(mmol N m−3)−1 d−1

d−1

mmol N m−3

dimensionless

dimensionless

dimensionless

dimensionless

d−1

(mmol N m−3)−1 d−1

m d−1

d−1

m d−1

g g−1

0.015d

0.025e

1.0c

0.6g

0.67h

0.33h

0.69i

0.75j

0.02k

0.34m

6.43c

0.06c

0.13c

75n

0.015

0.025

1.0

0.6

0.67

0.33

0.69

0.75

0.0l

0.34

6.43

0.06

0.13

75

0.015

0.025

1.25f

0.6

0.67

0.33

0.69

0.75

0.02

0.34

6.43

0.06

0.13

75

0.015

0.025

2.0f

0.6

0.67

0.33

0.69

0.75

0.02

0.34

6.43

0.06

0.13

75

Source: a mean of values for polar waters provided in Table 2 of Rey (1991); b photosynthetic parameters of HNLC stations halved with respect to BIOTRANS

because of iron limitation (see text); c Fasham and Evans (1995); d tuned for BIOTRANS; initial guess was 0.02 d−1 (Yool et al. (2011, 2013a); e Oschlies and

Schartau (2005); f tuned for HNLC stations (see text); g tuned for BIOTRANS: initial guess was 0.86 mmol N m−3 (Fasham and Evans, 1995); h as for Fasham

(1993) but adjusted for different model structure; i Anderson (1994); j Anderson and Hessen (1995); k Yool et al. (2011, 2013a); l tuned for station India;
m Oschlies and Schartau (2005); n Sathyendranath et al. (2009).

using a single extinction coefficient, it is easily justified a

priori given the improved representation of light attenuation

and its impact on predicted primary production (Anderson,

1993). Model sensitivity to these various assumptions regard-

ing the calculation of light attenuation and photosynthesis

will be examined in Sect. 4.3, including an assessment of the

performance of the algorithms of Evans and Parslow (1985)

and Anderson (1993).

The model was run for 5 years, by which time it gener-

ates a repeating annual cycle of plankton dynamics. The last

year of simulation for station BIOTRANS, with initial pa-

rameter settings as described above, is compared to data for

chlorophyll and nitrate in Fig. 10. Nitrate (model DIN) is

predicted remarkably well using these default parameter set-

tings, whereas the predicted seasonal cycle of chlorophyll

shows a poorer match with data. The peak of the spring

bloom is more than double that observed and post-bloom

chlorophyll is also consistently elevated (by approximately

0.2 mg m−3) relative to observations (Fig. 10). Parameter ad-

justment is therefore desirable in order to improve the fit with

data.

4.2 Model calibration

Many modelers go about parameter adjustment on a trial-

and-error basis, making ad hoc changes to parameters and

observing the outcome. A more structured way of going
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Figure 10. Simulation for station BIOTRANS using first-guess pa-

rameters compared to data (year 2002) for (a) chlorophyll and (b)

nitrate.

about this is to undertake a systematic sensitivity analysis

of parameters and then, informed by this analysis, choose

which parameters to vary. We use EMPOWER to demon-

strate this practice here. Three variables were selected as

simple measures of model mismatch with data: minimum

DIN encountered during the seasonal cycle, Nmin, which is

a logical choice because it is desirable to correctly predict

DIN drawdown during the spring period, maximum chloro-

phyll at the peak of the spring bloom, chlmax and the average

summer chlorophyll between days 150 and 300, chlav. Val-

ues of these three quantities, as outputs from the run shown

in Fig. 10, were 0.093 mmol N m−3 for Nmin and 2.30 and
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Figure 11. Simulation for station BIOTRANS after parameter tun-

ing (see text): (a) chlorophyll, (b) nitrate.

0.58 mg chl m−3 for chlmax and chlav respectively. Model pa-

rameters were varied ±10 % and the change in these vari-

ables quantified in terms of normalised sensitivity:

S(p)=
(W(p)−WS)/WS

(p−pS)/pS
, (16)

where WS is the value of a given variable (in this case Nmin,

chlmax or chlav) for the standard parameter set with parameter

value pS , andW(p) is the value when the parameter is given

value p. Results are shown in Table 4, ordered high to low

for sensitivity of chlmax.

The requirement for improving the model fit is to decrease

chlmax and, to a lesser extent, decrease chlav also. Looking

at Table 4, chlmax and chlav are together sensitive to zoo-

plankton parameters, notably kZ , Imax and βZ . In contrast,

chlmax is sensitive to phytoplankton mortality, mP , whereas

chlav is not. The initial guess for kZ of 1.0 mmol N m−3

may be somewhat high, e.g. separate values of 0.8 and

0.3 mmol N m−3 were used for micro- and mesozooplankton

in the model of Yool et al. (2011, 2013a). Values for kZ lower

than 1.0 mmol N m−3 have also been used in other models,

e.g. values of 0.75 and 0.8 mmol N m−3 were used by An-

derson and Pondaven (2003) and Llebot et al. (2010) respec-

tively. Mortality parameters such as mP are poorly known

and an easy choice for modellers when it comes to parameter

adjustment. We varied parameters kZ and mP and were able

to achieve a good fit to the data with kZ = 0.6 mmol N m−3

and mP = 0.015 d−1 (Fig. 11). The predicted overwinter

chlorophyll is somewhat too low but this is a common fea-

ture of slab-type models. The mismatch can be improved by

removing the linear phytoplankton mortality term (i.e. set-

ting mP = 0; see Sect. 4.4 and discussion therein). A further

consideration is that phytoplankton may adjust their C : chl

ratio in winter to mitigate the effect of the low light inten-

sities that they experience. We consider removing this mor-

tality term unrealistic. It is no good getting the right result

for the wrong reasons and so chose to keep phytoplankton

mortality unchanged.

The associated seasonal cycles of P,Z and D, along with

primary production, phytoplankton grazing and mortality are

shown in Fig. 12. Phytoplankton escape grazing in control in

April and early May with the peak of the bloom occurring on
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Figure 12. Predicted state variables and fluxes for the station BIO-

TRANS simulation: (a) P , Z andD and (b) phytoplankton growth,

grazing and non-grazing mortality.
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Figure 13. Simulations for station India: (a) chlorophyll, (b) nitrate.

Data are for year 1998.

day 137. Zooplankton catch up a week later. Primary produc-

tion remains relatively high over summer, but tightly coupled

to grazing which is sufficient to keep phytoplankton biomass

in check. Nutrient drawdown continues after the peak of the

bloom with maximum depletion occurring in July.

It might be expected that station India is simulated ac-

curately with the same parameter values as those of station

BIOTRANS because of their relatively close proximity in the

northern North Atlantic Ocean. In fact, the predicted spring

bloom is rather high, approximately double the maximum in

the observations for year 1998 (Fig. 13), although not out-

with what is seen in the multi-year data (Fig. 9). An improved

fit is easily achieved by setting mZ = 0, i.e. removing the

linear zooplankton mortality term (Fig. 13). Other models,

e.g. Fasham (1993), have similarly not included a linear zoo-

plankton loss term.

The two HNLC stations can be expected to require al-

ternative parameterisations to the two North Atlantic sta-

tions because of their different food web structure. In con-

trast to the diatom spring bloom in the northern North

Atlantic, iron-limited HNLC systems favour small phy-

toplankton which are tightly coupled to microzooplank-

ton grazers (Landry et al., 1997, 2011), “grazer controlled

phytoplankton populations in an iron-limited ecosystem”

(Price et al., 1994). Low growth rate of phytoplankton

may be expected relative to the North Atlantic because

of iron limitation. Parameters V max
P (0) and α may typi-

cally decrease by 50 % relative to iron-replete conditions

(Alderkamp et al., 2012). For stations Papa and KERFIX,

www.geosci-model-dev.net/8/2231/2015/ Geosci. Model Dev., 8, 2231–2262, 2015



2246 T. R. Anderson et al.: EMPOWER-1.0

Table 4. Model sensitivity analysis: station BIOTRANS. Variables are chlav (average chlorophyll day 150–300), chlmax (peak bloom chloro-

phyll) and Nmin (minimum nitrate during seasonal drawdown). Parameters ranked according to sensitivity to chlmax.

Parameter chlavS(p) +10 % chlavS(p)−10 % chlmaxS(p) +10 % chlmaxS(p)−10 % NminS(p) +10 % NminS(p)−10 %

Imax −0.55 −0.83 −1.10 −1.27 0.60 0.58

kZ 0.92 0.90 1.04 1.20 −0.81 −1.09

βZ −0.29 −0.50 −1.02 −1.18 0.29 0.32

kNZ −0.53 −0.75 −1.02 −1.17 −0.11 −0.10

mP 0.01 −0.03 0.62 0.72 0.07 0.07

α −0.05 −0.16 −0.70 −0.60 −0.53 −0.68

ϕP −0.40 −0.47 −0.51 −0.55 0.44 0.45

mZ 0.07 0.06 0.49 0.49 −0.07 −0.06

Vmax
P

(0) −0.08 −0.12 −0.20 −0.16 −0.63 −0.81

kN 0.00 −0.01 0.09 0.10 1.06 1.05

mZ2 0.27 0.28 0.09 0.09 −0.27 −0.32

mP 2 −0.02 −0.02 −0.07 −0.06 0.05 0.05

mD 0.06 0.06 0.01 0.01 0.11 0.11

wmix 0.07 0.07 0.01 0.01 0.65 0.67

vD −0.04 −0.04 0.01 0.01 −0.13 −0.16
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Figure 14. Simulations for station Papa before and after parameter

tuning: (a) chlorophyll, (b) nitrate. Data are for year 2007.

we therefore assigned V max
P (0)= 1.25 g C (g chl)−1 h−1 and

α = 0.075 g C (g chl)−1 h−1 (W m−2)−1. In addition, high

maximum grazing rates may be expected because of the

small size structure of the plankton assemblage. If graz-

ing is dominated by microzooplankton, maximum grazing

rate (parameter Imax) may be as high as 2.0 d−1 (Mongin

et al., 2006). We achieved a good fit to data with Imax =

1.25 d−1 (Fig. 14). A similar exercise was carried out for sta-

tion KERFIX. Using the same parameter set as for station

Papa, predicted chlorophyll was too high (by approximately

0.05 mg m−3) during the austral summer (Fig. 15). If Imax is

further increased to 2.0 d−1, a reasonable fit to the chloro-

phyll data is achieved (Fig. 15). The predicted end-of-year

increase in chlorophyll arrives a month or two too early, but

this may be a consequence of the imposed climatological cy-

cle of mixed layer depth. Predicted nitrate is somewhat too

low (by about 4 mmol m−3) if the BIOTRANS parameters

are used but is markedly improved with the adjusted param-

eters.

Figure 15. Simulations for station KERFIX before and after param-

eter tuning (see text for details): (a) chlorophyll, (b) nitrate. Data are

for year 2006.

4.3 Sensitivity to photosynthesis algorithm

Structural sensitivity analysis is performed to assess model

sensitivity to the different assumptions for calculating daily

depth-integrated photosynthesis. The best-fit simulation for

station BIOTRANS presented above (Fig. 11) is used as the

baseline for comparison, although we will comment on sen-

sitivity for other stations also. Default settings in the baseline

simulation were a numerical time integration (over the day),

a Smith function for the P -I curve, and a sinusoidal pattern

of daily irradiance with the piecewise application of Beer’s

law (Eq. 10; Anderson, 1993) for light attenuation in the wa-

ter column.

The first sensitivity test involved changing the P -I curve

from a Smith function (Eq. 7) to an exponential function

(Eq. 8). Predicted seasonal cycles for chlorophyll and nitrate

at station BIOTRANS are shown in Fig. 16. Results changed

little with respect to the baseline simulation, the only no-

ticeable difference being the magnitude of the spring bloom

which was about 0.2 mg m−3 greater when using the expo-

nential P -I curve. Similar insensitivity was seen when using

the exponential P -I curve for simulating stations India, Papa

Geosci. Model Dev., 8, 2231–2262, 2015 www.geosci-model-dev.net/8/2231/2015/
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Figure 16. Simulations for station BIOTRANS showing sensitiv-

ity to choice of P -I curve: (a) Smith function (standard run), (b)

exponential function.
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Figure 17. Simulations for station BIOTRANS showing sensitiv-

ity to choice of diel variation in irradiance: (a) sinusoidal (standard

run), (b) triangular.

and KERFIX (results not shown). It is perhaps unsurprising

that the model shows minimal sensitivity to choice of P -I

curve as the shapes of the two curves are similar.

Reverting to the Smith function as the chosen P -I curve,

model predictions were next compared for simulations us-

ing sinusoidal versus triangular irradiance (Fig. 17). Once

again, the difference between the two simulations is rela-

tively minor. A larger spring bloom (approx. 0.5 mg m−3) is

seen when using the triangular assumption. Irradiance is un-

derestimated relative to the sinusoidal pattern (Fig. 6) leading

to lower primary production over winter, decoupling from

zooplankton and a larger spring bloom. It is worth noting

that the sensitivity shown to choice of irradiance pattern is

at least as great as that for the choice of P -I curve but has

generally received much less attention in the literature.

Model sensitivity of predicted primary production to the

equations describing light attenuation in the water column

was previously highlighted by Anderson (1993), although

without extending to analysis using full ecosystem models.

Model predictions for the two choices for light attenuation

(simple Beer’s law, Eq. 9, versus piecewise Beer’s, Eq. 10)

are shown in Fig. 18, for all four stations. Whereas chloro-

phyll shows little change when switching between the two

routines, predicted NO3 exhibits markedly greater drawdown

when using the simple Beer’s law, especially for station India

where concentrations reached near zero by the end of June.

The difference between the simulations can be understood by
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Figure 18. Model simulations for all four stations showing sensitiv-

ity to choice of method for calculating light attenuation in the water

column: (a) piecewise Beer’s law (Eq. 10), (b) simple Beer’s law

(Eq. 9).

comparing kPAR as a function of phytoplankton concentra-

tion for the two algorithms (Fig. 19). The single Beer’s law

of Eq. (9) predicts a modest increase in kPAR from 0.04 m−1

at zero phytoplankton to 0.1 m−1 at P = 1 mmol N m−3. The

main difference with the piecewise Beer’s law is the much

greater light extinction in the upper 5 m of the water column,

with kPAR of 0.13 m−1 at P = 0 mmol N m−3 increasing to

0.23 m−1 at P = 1 mmol N m−3. A lesser rate of light atten-

uation using the simple Beer’s law leads to greater penetra-

tion of light into the water column, higher photosynthesis and

greater predicted drawdown of NO3.

Finally, there is the option to use the routines of Evans

and Parslow (1985) and Anderson (1993) to calculate daily

depth-integrated photosynthesis, without recourse to using

numerical integration over time. Evans and Parslow used a

Smith function for photosynthesis in combination with a tri-

angular pattern of daily irradiance. This corresponds exactly

www.geosci-model-dev.net/8/2231/2015/ Geosci. Model Dev., 8, 2231–2262, 2015
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Figure 19. Light attenuation as predicted by Evans and Parslow

(1985; EP85) and for the three layers (0–5, 5–23,> 23 m; 1,2,3 re-

spectively) in Anderson (1993; A93), as a function of phytoplankton

concentration.

to the simulation in Fig. 17 for triangular irradiance. Thus,

running the model using the Evans and Parslow equations

(Appendix C) produces a result indistinguishable from the

numerical simulation. Matters are not so simple when us-

ing the Anderson (1993) equations to calculate daily depth-

integrated photosynthesis. The assumptions here are an expo-

nential P -I curve and sinusoidal light, corresponding to the

exponential P -I curve simulation in Fig. 16. But there is the

additional assumption that parameter α, in addition to kPAR,

is spectrally dependent and varies in the water column. Thus,

running the model with both light attenuation and photosyn-

thesis calculated as in Anderson (1993) gives rise to different

simulations for the four stations, especially India where there

is no bloom (Fig. 20). It is noticeable that, when using the

method of Anderson (1993), primary production is higher

over winter, a result of elevated α, giving rise to an earlier

spring chlorophyll bloom and greater drawdown of nitrate.

4.4 Mortality terms

The model includes two mortality terms, linear and

quadratic, for each of phytoplankton and zooplankton. This

approach has previously been used in other models (e.g. Yool

et al., 2011, 2013a), giving maximum flexibility. The obvi-

ous question is whether all four terms are actually needed.

As a simple structural sensitivity analysis, we removed each

of the four mortality terms in turn and show the impact

on the predicted seasonal cycles of chlorophyll and nitrate

for all four stations. The model is relatively insensitive to

the phytoplankton mortality terms although setting mP = 0

(i.e. removal of the linear term) promoted net phytoplank-

ton growth over winter, increasing coupling to zooplankton

grazers and giving rise to smaller phytoplankton blooms at

stations BIOTRANS and India in spring (Fig. 21). Predicted

seasonality in NO3 drawdown was barely affected by phyto-

plankton mortality parameters. It seems hard to justify that

loss rates should go to near zero at low population densities
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Figure 20. Simulations for all four stations comparing methods for

calculating daily depth-integrated photosynthesis, standard run (nu-

meric integration) and the algorithm of Anderson (1993) which is

an empirical approximation of a full spectral model: (a) chlorophyll,

(b) nitrate.

(the consequence of using a quadratic term only) because

all organisms have metabolic requirements. Nearly all ma-

rine ecosystem models do, therefore, include a linear term

for density-independent phytoplankton mortality and, for our

baseline simulation (Sect. 4.2), we chose to keep this term

on a purely conceptual basis. Given deep mixing, it is sur-

prising that phytoplankton biomass, as seen in the data, is

maintained over winter in high-latitude waters. The reasons

why this is so remain a matter of conjecture with candidate

theories including cyclic motion associated with convective

mixing (Huisman et al., 2002; Backhaus et al., 2003), and

phytoplankton motility or buoyancy to remain near the ocean

surface (see Ward and Waniek, 2007, and references therein).

The slab model has difficulty dealing with this issue but there

is no evidence that this seriously compromises results when

it comes to the predicted timing and magnitude of the spring
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Figure 21. Simulations for all four stations showing model sensi-

tivity to phytoplankton mortality. Parameters mP (linear mortality)

and mP2 (quadratic mortality) were set to zero in turn. (a) Chloro-

phyll, (b) nitrate.

bloom and associated ecosystem dynamics later in the year.

In contrast to the representation of linear mortality, many

models do not include a non-linear phytoplankton mortal-

ity term. Removing it only caused minor changes to model

predictions (Fig. 21) and so it may not be necessary.

In contrast to the phytoplankton results, removing the lin-

ear zooplankton mortality term had relatively little impact

on model predictions, whereas removal of the quadratic term

did, for all four stations (Fig. 22). Removal of quadratic mor-

tality resulted in phytoplankton levels decreasing by as much

as 50 % which is unsurprising since more zooplankton means

more grazing. Perhaps less obvious is the result that removal

of quadratic closure resulted in similarly large changes in

predicted post-bloom nitrate levels. Predation-related losses,

the quadratic term, were assumed to be instantly exported

and thereby lost from the surface mixed layer of the model.
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Figure 22. Simulations for all four stations showing model sensitiv-

ity for zooplankton mortality. Parameters mZ (linear mortality) and

mZ2 (quadratic mortality) were set to zero in turn. (a) Chlorophyll,

(b) nitrate.

Thus, when these losses are set to zero (parametermZ2 = 0),

nitrate drawdown is significantly diminished because, instead

of being instantly exported, zooplankton quadratic mortality

is allocated to sinking detritus, part of which is remineralised

in the mixed layer. As was noted by Fulton et al. (2003b),

quadratic closure of the upper trophic level in the trophic

web tends to be a successful way of closing the web. Overall,

the work highlights the need for careful consideration of the

parameterisation of closure in models, including the fate of

material thereof.

5 Discussion

Marine ecosystem modelling is somewhat of a black art re-

garding decisions about what state variables to include and

how to mathematically represent key processes such as pho-
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tosynthesis, grazing and mortality, as well as allocating suit-

able parameter values. The proliferation of complexity in

models has only served to increase the plethora of formu-

lations and parameterisations available to choose from. The

complex ecosystem models that have come to the fore in

recent years include, for example, any number of plankton

functional types, multiple nutrients, dissolved organic mat-

ter and bacteria, etc. (e.g. Blackford et al., 2004; Moore et

al., 2004; Le Quéré et al., 2005). Simulations are often car-

ried out within computationally demanding 3-D general cir-

culation models (GCMs) and, of course, the realism in ocean

physics thus gained is to be welcomed. The caveat is, how-

ever, that improvements in prediction can only be achieved if

the biological processes of interest can be realistically char-

acterised (Anderson, 2005). The key is, as described above,

to undertake extensive analysis of ecosystem model perfor-

mance and we propose that the use of a simple slab physical

framework of the type used in EMPOWER is ideal in this

regard. The pioneers of the field such as Riley, Steele and

Fasham employed slab physics to test their models, trying

out different formulations and parameterisations, just to see

what would happen (Anderson and Gentleman, 2012). The

simplicity afforded by using a zero-dimensional slab physics

framework provides an ideal playground for familiarisation

with ecosystem models, allowing for a multiplicity of runs

and ease of analysis. It is by following this approach that the

user develops an intuitive understanding of the complex non-

linear interdependencies of the model equations, a precursor

to making predictions with confidence.

Here, we have presented an efficient plankton modelling

testbed, EMPOWER-1.0, coded in the freely available lan-

guage R. It provides a readily available and easy to use tool

for thoroughly evaluating ecosystem model structure, formu-

lations and parameterisations by coupling the ecosystem dy-

namics to a simplified representation of the physical environ-

ment. EMPOWER has several advantages in that it is fast,

easy to run, its results are straightforward to analyse and,

last but by no means least, the code is transparent and easily

adapted to incorporate new formulations and parameterisa-

tions. As such, the main purpose of EMPOWER is to pro-

vide an ecosystem model testbed that allows users to fully

familiarise themselves with their models, allowing them to

subsequently be incorporated with greater confidence into 1-

D or 3-D models, as required. It may be that some amount of

reparameterisation is required when transferring the model

ecosystem between physical codes (from slab to 1-D or 3-D),

but this ought usually to be minimal in extent and will itself

be greatly informed by the previous slab modelling work.

Much better this approach, than starting out from scratch us-

ing computationally expensive and time-consuming 1-D or

3-D codes to undertake ecosystem model parameterisation.

Bearing in mind Steele’s two-layer sea, the first slab model

of its kind (Sect. 2), it is worth noting that simple ocean box

models are akin to slab models in terms of physical structure

but, whereas slab models usually are usually set up for point

locations in the ocean, box models represent spatial areas

(e.g. ocean basins or the global ocean). A mixed layer or eu-

photic zone is positioned above a deep ocean layer, with mix-

ing between the two but usually without a seasonally chang-

ing mixed layer depth. Tyrrell (1999), for example, used a

global ocean box model to study the relative influences of ni-

trogen and phosphorus on oceanic primary production. Box

models were likewise used by Chuck et al. (2005) to study

the ocean response to atmospheric carbon emissions over the

21st century. Slab models, including EMPOWER, effectively

convert to simple box models if the seasonality of mixed

layer depth is switched off. Without a seasonally varying

MLD, box models have limited capacity to capture seasonal

plankton dynamics because of the role played by MLD in

mediating the light and nutrient environment experienced by

phytoplankton. Our results (Figs. 18–20) demonstrate sensi-

tivity to accurate representation of the submarine light field

(i.e. equations describing light attenuation in the water col-

umn).

In order to demonstrate the utility of EMPOWER, we car-

ried out both a parameter tuning exercise and a structural sen-

sitivity analysis, the latter examining the equations for cal-

culating daily depth-integrated photosynthesis and mortality

terms for both phytoplankton and zooplankton. In the param-

eter tuning exercise, a simple NPZD model, broadly based on

the ecosystem model of Fasham and Evans (1995), was fitted

to data (seasonal cycles) for chlorophyll and nitrate at four

stations: BIOTRANS (47◦ N, 20◦W), India (60◦ N, 20◦W),

Papa (50◦ N, 145◦W) and KERFIX (50◦ 40′ S, 68◦ 25′ E).

Formal parameter sensitivity analysis was carried out, high-

lighting which parameters phytoplankton stocks and nitrate

drawdown are sensitive to. The model was successfully tuned

to all four stations, the two HNLC stations (Papa and KER-

FIX) requiring different parameterisations, notably a halving

of photosynthetic parameters (acting as a proxy for iron lim-

itation) relative to the North Atlantic sites.

Our parameterisation of the different stations highlighted

the somewhat ad hoc process that most modellers go through

when assigning parameter values. Some parameters were set

directly from the results of observation and experiment. More

often than not, however, we followed the “path of least resis-

tance” when assigning parameters, namely to simply select

values from previously published modelling studies. Equa-

tions for processes such as photosynthesis, grazing and mor-

tality were likewise selected “off the shelf” from the pub-

lished literature. Previous publication does not, of course,

guarantee that equations or parameter values are necessar-

ily best suited for a particular modelling application. More-

over, it is all too easy for less than ideal, even dysfunctional,

formulations to become entrenched within the discipline and

used in common practice (Anderson and Mitra, 2010). Pa-

rameter tuning is almost inevitable in order to ensure satisfac-

tory agreement with data and we have shown how rigorous

sensitivity analysis can help in this regard. Of course, even

with a table of parameter sensitivities, there is still a consid-
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erable subjective element to choosing which parameters to

adjust. The most sensitive parameters should be selected, but

the degree of uncertainty in parameter values is an additional

consideration. It is no good tuning a sensitive parameter if

its value is already well known from observation and experi-

ment.

A necessary complement when ensuring that models show

acceptable agreement with data is to remember that it is im-

portant that the theories and assumptions underlying the con-

ceptual description of models are correct or, at least, not in-

correct (Rykiel Jr., 1996). Indeed, it is the conceptual reali-

sation of models that in many ways poses the greatest chal-

lenge, requiring expertise and practice to overcome obser-

vational or experimental lacunae (Tsang, 1991). Subsequent

to the parameter tuning exercise, we studied the sensitiv-

ity of simulation results to chosen formulations for depth-

integrated photosynthesis and both phytoplankton and zoo-

plankton mortality. In the case of the photosynthesis calcula-

tion, some aspects showed relatively low sensitivity, namely

the choice of P -I curve and whether to assume a triangu-

lar or sinusoidal pattern of irradiance throughout the day. In

contrast, the way in which light attenuation in the water col-

umn is calculated showed marked sensitivity. Using a sim-

ple Beer’s law (Eq. 9) attenuation coefficient throughout the

water column is clearly oversimplified because the spectral

properties of irradiance vary with depth. Moving to a piece-

wise Beer’s law (Eq. 10), with separate attenuation coeffi-

cients for depth ranges 0–5, 5–23 and > 23 m (Anderson,

1993), led to more rapid light attenuation near the ocean sur-

face. Depth-integrated photosynthesis declined accordingly,

delaying the onset of the spring bloom and reducing its mag-

nitude, along with drawdown of nutrient. The difference is

in part due to parameter values, rather than the inherent dif-

ference in the equations. Additional sensitivity analysis and

parameter tuning could be used to investigate this further but

in fact such an analysis was undertaken by Anderson (1993),

who showed that no amount of parameter tuning can ade-

quately account for the fact that attenuation will vary with

depth, and cannot be assumed to be constant, because of the

spectral properties of the irradiance field. Given the above,

we conclude that the use of the Evans and Parslow (1985)

algorithm to calculate daily depth-integrated photosynthesis,

as has been the choice of many previous studies (Table 1), is

easily justified, at least for the stations we examined, given

the relative insensitivity to choice of P -I curve and choice of

triangular versus sinusoidal irradiance. Superior predictions

are likely, however, if this algorithm is used in conjunction

with the piecewise parameterisation of light attenuation (An-

derson, 1993; Eq. 10) rather than a simple Beer’s law with

fixed attenuation throughout the mixed layer (Eq. 9).

When it comes to biogeochemical modelling studies in

GCMs, it is possible that all manner of different methods

are used to calculate light attenuation in the water column

and resulting photosynthesis. Methodologies are often not

reported in full within published texts, the assumption being

that they are in some way routine and straightforward and

that, perhaps, the models are insensitive to this choice. Con-

sider, for example, the MEDUSA-2.0 (Model of Ecosystem

Dynamics, nutrient Utilisation, Sequestration and Acidifica-

tion) model (Yool et al., 2013a), published within Geosci-

entific Model Development and afforded a detailed descrip-

tion of equations and chosen parameter values. Despite this

level of detail, the model’s calculation of light attenuation is

largely overlooked and the reader is instead summarily di-

rected to the LOBSTER model (Levy et al., 2001). This di-

vides light into two wavebands, “red” and “green-blue”, that

are attenuated separately by seawater, and a Smith function

(Eq. 7) is used to calculate photosynthesis. The published de-

scription omits a number of key details (although the model

code was supplied), for instance that there is a 50 : 50 divi-

sion of light between the two wavebands at the ocean surface,

that the photosynthetically active fraction is 0.43 of total ir-

radiance, that extinction coefficients for the two wavebands

are a function of chlorophyll and that photosynthesis is cal-

culated within each model layer (the model uses fixed layer

depths, with 13 layers in the upper 100 m) as a function of

average light within the layer.

As a point of interest, we ran our model for all four sta-

tions again, this time using the MEDUSA-2.0 method of

light attenuation and a Smith function for the P -I curve (see

Appendix E for details of the parameterisation of light at-

tenuation). The calculation included replication of the layer

structure within the GCM in order to achieve a fair com-

parison. Results (not shown) were remarkably close to the

baseline, fitted simulations for each station. In the case

of station BIOTRANS, the peak of the spring phytoplank-

ton bloom using the MEDUSA light parameterisation was

only 0.7 mg chl m−3, 0.2 mg m−3 less than that in the stan-

dard run, but otherwise predicted seasonal cycles of chloro-

phyll and nitrate that were almost identical for the two

simulations. Likewise, the predicted chlorophyll and nitrate

changed little at stations India and Papa, whereas at KER-

FIX nitrate drawdown was slightly greater, approximately

0.5 mmol N m−3, when using the MEDUSA light parame-

terisation. The similarity between simulations using the two

different approaches to light attenuation occurs because, re-

markably, calculated light attenuation using the two red and

green wavebands (MEDUSA) differs little from that using

the Anderson (1993) piecewise Beer’s law. Here, in a nut-

shell, is a classic example of the utility of EMPOWER. This

result should alert GCM modellers to the fact that near-

identical results can be generated for light attenuation in the

water column using these two contrasting sets of equations

and a choice can be made as to which is most suitable for

implementation based on computational efficiency. From a

theoretical point of view, the result is also interesting. The

equations of Anderson (1993) are an empirical approxima-

tion of the full spectral model of Morel (1988) which divided

PAR into 61 wavebands. It would appear that this model can

be stripped down to just two wavebands, red and green, with-
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out serious degradation in accuracy when it comes to predict-

ing light attenuation.

We also used EMPOWER to undertake an analysis of

model sensitivity to the presence/absence of linear and non-

linear mortality terms for phytoplankton and zooplankton.

Whereas the use of linear phytoplankton mortality terms is

commonplace in models (e.g. Anderson and Williams, 1998;

Oschlies and Schartau, 2005; Salihoglu et al., 2008; Llebot

et al., 2010), we investigated the performance of an addi-

tional quadratic phytoplankton mortality term. This term is

intended to represent loss processes that scale with phyto-

plankton biomass that are not already accounted for in the

model. Given that both self-shading and grazing are explic-

itly modelled, we considered the quadratic term to represent

mortality due to viruses. Model results were however rela-

tively insensitive to this parameterisation, although the po-

tential importance of viruses in marine systems should not be

underestimated (Bratbak, 1993, 1996; Danovaro et al., 2011).

It has long been recognised that the parameterisation and

functional form of zooplankton mortality, the model closure

term, can have a pronounced effect on modelled ecosys-

tem dynamics (e.g. Steele and Henderson, 1981, 1992, 1995;

Murray and Parslow, 1999; Edwards and Yool, 2000; Ful-

ton et al., 2003a, b; Neubert et al., 2004). Quadratic clo-

sure is a common choice, although other non-linear func-

tional forms are also in use. While it is commonly stated that

quadratic closure is dynamically stabilising, i.e. it prevents

both blooms and extinction of prey, there is a limit to this in-

fluence (Edwards and Yool, 2000) since other processes can

come into play. In our case, it is obvious that quadratic clo-

sure had a stabilising effect on the model. Its removal caused

the bloom peak to be higher and also post-bloom phytoplank-

ton levels to decline to near zero.

In contrast to the community’s broad recognition of the

potential sensitivity to choice of closure scheme, far less at-

tention has been paid to model sensitivity regarding the fate

of zooplankton mortality. In reality, there are likely various

types of zooplankton mortality including grazing by higher

predators, starvation and disease. As a mathematical clo-

sure term, one can consider the grazing loss to be parti-

tioned between an infinite series of higher predators (e.g.

Fasham et al., 1990), with partitioning between detritus and

dissolved nutrients in both organic and inorganic form. The

fate of these losses will occur with time delays and poten-

tially also with spatial separation due to migration of preda-

tors. Moreover, any detrital production by higher predators

would comprise significantly larger “particles” than those

due to plankton death and would therefore be associated with

much higher sinking rates. Non-grazing mortality might lead

to production of detritus in situ. There is no consensus on

best practice, despite the fact that different approaches to par-

titioning of zooplankton losses between detritus, nutrient and

DOM differs markedly between models and can have a sig-

nificant effect on modelled ecosystem function (Anderson et

al., 2013). Future structural sensitivity studies should be con-

ducted to explore how the f ratio (the fraction of primary

production fuelled by external nutrient) and e ratio (i.e. rela-

tive export to total primary production) are affected by the

various assumptions relating to zooplankton mortality and

model closure.

Model sensitivity to choice of functional forms and pa-

rameterisation, often manifested as surprising and unforseen

emergent predictions, is classic complexity science (Bar-

Yam, 1997). Understanding emergence and the consequences

for accuracy of prediction is a key component of modelling

complex systems (Anderson, 2005). Results here, as dis-

cussed above, showed varying sensitivities to different for-

mulations and assumptions and demonstrated the utility of

EMPOWER in tackling this important topic. High sensitivi-

ties have previously been documented in marine ecosystem

models, e.g. to the exact form of the zooplankton functional

response (Anderson, 2010; Wollrab and Diehl, 2015) and

choice of zooplankton trophic transfer formulation (Ander-

son et al., 2013). Other studies have also shown “alarming”

sensitivity to apparently small changes in the specification of

biological models (e.g. Wood and Thomas, 1999; Fussmann

and Blasius, 2005). Anderson (2005) described this insidious

problem, namely sensitivity of emergent outcomes to inter-

acting non-linear differential equations, as “all in the inter-

actions”. Dealing with it poses an ongoing challenge for the

modelling community.

EMPOWER-1.0 is provided as a testbed which is suitable

for examining the performance of any chosen marine ecosys-

tem model, simple or complex. We chose to demonstrate

its use by incorporating a simple NPZD ecosystem model.

Simple marine ecosystem models are, however, all too often

brushed aside in marine science today. While our objective

here is not to delve deeply into the ongoing debate about

complexity in models (e.g. Fulton et al., 2004; Anderson,

2005; Friedrichs et al., 2007; Ward et al., 2010), we would

nevertheless like to comment on the worth of simple ecosys-

tem models. Complex ecosystem models are often favoured

today (e.g. Blackford et al., 2004; Moore et al., 2004; Le

Quere et al., 2005) with a similar trend in ocean physics to-

ward large, computationally demanding models. Many pub-

lications in recent years have involved the use of 3-D mod-

els (e.g. Le Quéré et al., 2005; Wiggert et al., 2006; Follows

et al., 2007; Hashioka et al., 2013; Yool et al., 2013b; Val-

lina et al., 2014), although 1-D models are also well repre-

sented (e.g. Vallina et al., 2008; Kearney et al., 2012; Ward

et al., 2013). The caveat is that improvements in prediction

can only be achieved if the processes of interest can be ade-

quately parameterised (Anderson, 2005). That is a big caveat

and one made harder to achieve because it is often difficult

and/or time consuming to thoroughly test the formulations

and parameterisations involved. Simple NPZD-type models

have a useful role in this regard. Albeit with tuning (but the

complex models are tuned also), our NPZD model was suc-

cessfully used to describe the seasonal cycles of phytoplank-

ton and nutrients at four contrasting sites in the world ocean.
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It was readily applied to test different parameterisations for

photosynthesis and mortality. At least in terms of basic bulk

properties, simple models produce realistic predictions and

are easy to thoroughly investigate and assess. The whole is-

sue of model complexity ought in any case to be question de-

pendent (Anderson, 2010), e.g. simple models may be useful

to address questions on biogeochemical cycles whereas more

complex models may be necessary to answer more ecologi-

cally relevant questions such as the effect of biodiversity on

ecosystem function. The use of the EMPOWER testbed al-

lows the user to investigate and determine whether a partic-

ular ecosystem model is sufficiently complex, or indeed too

complex, to address the question of interest.

We have described the utility of slab models as a testbed

underpinning marine ecosystem modelling research. This is

however by no means their only use. Slab models are ideal

for teaching ecological modelling. They embrace the com-

plex interplay between primary production and the physico-

chemical environment, combined with top-down control by

zooplankton. Students often have difficulty grasping the rel-

ative significance of causal effects in ecosystems (Grotzer

and Basca, 2003), e.g. the relative roles of bottom-up ver-

sus top-down processes in structuring food webs. A certain

amount of lecture material is of course needed, but there is

no substitute for hands-on modelling providing an interac-

tive approach whereby students can actively investigate ideas

and interact between themselves and a teacher (Knapp and

D’Avanzo, 2010). Insight can be gained by getting students

to try simple things like switching grazing off, doubling phy-

toplankton growth rates, etc. The slab modelling framework

provided herein is ideal for this purpose. The code is trans-

parent, modular and readily adjusted to include alternate pa-

rameterisations, it is easily set up for alternate ocean sites, the

model runs fast with graphs of results appearing on the screen

on completion, results are readily written to output files for

more in depth analysis and, by coding in R, the models can

be accessed and run without need for purchasing proprietary

software.

Finally, the great advances in marine ecology that the pi-

oneers of plankton modelling achieved using slab models

should not be forgotten. Riley, Steele and Fasham laid the

foundations of today’s marine ecosystem modelling using

plankton models embedded within simple physics. Even in

the modern arena, this use of simple physics cannot be dis-

missed as being too simple for practical application and there

is no reason why further scientific advances cannot be made

using slab models. Models are, fundamentally, all about sim-

plifying reality.
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Appendix A: Irradiance calculations

Both the Evans and Parslow (1985) and Anderson (1993)

subroutines for calculating daily photosynthesis require noon

irradiance and day length as inputs. When there are data

available, these data can be used as forcing for a model,

akin to what is done for temperature. However, most typi-

cally light data is not available and so a light submodel must

be used to prescribe the necessary forcing. A climatological

approach is often used whereby these inputs are specified us-

ing trigonometric/astronomical equations. This task is not as

straightforward as it might first appear. The basic equations

are presented in texts such as Brock (1981) and Iqbal (1983).

Some adjustments were provided by Shine (1984) and we use

the equation for short-wave irradiance at the ocean surface on

a clear day published therein:

Iclear =
ISCcos2(z)/R2

v

1.2cos(z)+ e0(1.0+ cos(z))/1000+ 0.0455
. (A1)

ISC is the solar constant (e.g. 1368 W m−2: Thekaekara

and Drummond, 1971), i.e. the incoming solar radiation that

would be incident on a perpendicular plane, immediately out-

side the atmosphere. Iclear also depends on solar zenith angle

(z), Earth’s radius vector (RV : accounts for the eccentricity

of the earth’s orbit) and water vapour pressure (e0; the partial

pressure of water vapour in the atmosphere). A typical value

for e0 is 12 mb (e.g. Josey et al., 2003); the calculation of

Iclear is not sensitive to this parameter. The equation for RV
is

RV = 1/(1+ 0.033cos(2πJ/365))1/2, (A2)

where J is day of year (Julian day; i.e. 1= 1 January). Solar

zenith angle depends on latitude (ϕ), solar declination angle

(δ) and time of day (γ , where the Earth moves 15◦ per hour

and γ is difference from noon):

cos(z)= sin(ϕ)sin(δ)+ cos(ϕ)cos(δ)cos(γ ). (A3)

The cos(γ ) term becomes irrelevant when considering

noon irradiance. Solar declination angle is given by

δ = 23.45sin(2π(284+ J )/365), (A4)

where h is hour angle which is the difference between

the given time and noon (where 1 h is 15◦). Note that δ

is expressed in degrees in the above equation (1 radian =

180/π◦).

The flux of photosynthetically active solar radiation just

below the ocean surface at noon, Inoon, can now be calcu-

lated:

Inoon = CFACfPAR(1−φ)Iclear, (A5)

where fPAR is the fraction of solar radiation that is PAR (λ

between 400 and 700 nm), φ is ocean albedo and CFAC is

the effect of clouds on atmospheric transmission. Parame-

ters fPAR and φ are relatively invariant with typical values

of 0.43 for fPAR and 0.04 for φ (e.g. Fasham et al., 1990).

Dealing with the effects of clouds is a problematic issue

for modellers. Simple empirical approaches have been de-

veloped, two of the most popular being those of Reed (1977)

and Smith and Dobson (1984). We have opted for the for-

mer in which CFAC is a function of zenith angles (specified

in degrees):

CFAC = 1− 0.62W/8+ 0.0019(90− z), (A6)

where W is cloud fraction in oktas. A value of W = 6 was

used for all four stations.

The equation for calculating day length (DL, h) is (Brock,

1981)

DL =
2

15
arccos(− tan(ϕ) tan(δ)). (A7)

Appendix B: Analytic integrals for photosynthesis with

depth

The average photosynthesis within a layer of depth H is

V̄P(H) =
1

H

H∫
z=0

VP (z)dz, (B1)

where VP is photosynthesis as a function of light intensity

(specified as the P -I curve). Two P -I curves were investi-

gated using EMPOWER, a Smith function (Eq. 7) and an ex-

ponential function (Eq. 8). Analytic solutions to Eq. (B1) are

provided here for each of these two P -I curves. In both cases

a Beer’s law attenuation with depth is assumed (parameter

kPAR), i.e. I (z)= I (0)e-kPARz, where I (0) is the irradiance

entering the layer from above.

B1 Smith P -I curve

By performing a change of variables such that x = αI (z), the

integral above becomes

V̄P(H) =
−V max

P

H

H∫
z=0

1

((V max
P )2+ x2)1/2

dx. (B2)

This integral is solved analytically using a trigonometric

transformation and then integration by parts, giving

V̄P(H) =
V max
P

kPARH
ln

(
x0+ ((V

max
P )2+ x2

0)
1/2

xH + ((V
max
P )2+ x2

H )
1/2

)
, (B3)

where x0 is x(z= 0) and xH is x(z=H).
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B2 Exponential P -I curve

In order to integrate Equation B1 using an exponential P -I

curve it is first useful to define (Platt et al., 1980)

I z∗ =
Izα

V max
P

. (B4)

The integration over depth is then (see Platt et al., 1990)

V̄P(H) =
V max
P

kPARH

∞∑
n=1

(−1)n+1

n.n!
((I 0
∗ )
n
− (IH∗ )

n). (B5)

For practical purposes, we used a maximum n value of 16.

Appendix C: Special formulations for calculating daily

photosynthesis

C1 Evans and Parslow (1985) photosynthesis

calculation

Evans and Parslow (1985) provide an algorithm for calculat-

ing daily depth-integrated photosynthesis with the assump-

tions of a Smith P -I curve (Eq. 3), a triangular pattern of

irradiance from sunrise to sunset and light extinction calcu-

lated with a single Beer’s law coefficient (Eq. 9). The average

daily rate of photosynthesis within the mixed layer is calcu-

lated as

V̄P(H,τ) = 2

τ∫
0

1

H

M∫
0

VP (I,z)dzdt, (C1)

where t , measured in days, is 0 at sunrise and τ at noon and

H is layer depth. Assuming a triangular pattern of irradiance

about noon, Eq. (A3.1) can be recast as (Evans and Parslow,

1985)

V̄P(H,τ) =
2V max

P

kPARH

τ∫
0

β2∫
β1

t dydt

y(y2+ t2)1/2
, (C2)

β1 =
V max
P τ

αInoon

,β2 = β1 exp(kPARH). (C3)

Inoon is the photosynthetically active radiation (PAR) just

below the ocean surface at noon. This integral is solved as

(Evans and Parslow, 1985)

V̄P(H,τ) =
2V max

P

kPARH

[
f (β2,τ)− f (β1,τ)

−f (β2,0)+ f (β1,0)
]
, (C4)

f (y, t)= (y2
+ t2)1/2− t ln

t + (y2
+ t2)1/2

y
. (C5)

C2 Anderson (1993) photosynthesis calculation

The subroutine of Anderson (1993) was developed as an

empirical approximation to the spectrally resolved model of

light attenuation and photosynthesis of Morel (1988), used

in combination with the polynomial method of integrating

daily photosynthesis of Platt et al. (1990). It is based on an

exponential P -I curve (Eq. 8) and assumes a sinusoidal pat-

tern of irradiance throughout the day, with the calculation of

light attenuation using a piecewise Beer’s law (Eq. 10). The

irradiance leaving the base of each layer is

Ibase,i = Ibase,i−1 exp[−kPAR,i(zbase,i − zbase,i−1)], (C6)

where Ibase,0 is the irradiance immediately below the ocean

surface and zbase,i is the depth of the base of the layer i

(where zbase,0 = 0).

The subroutine of Anderson (1993) also takes account

of the fact that, in reality, α (the initial slope of the P -I

curve) depends on the spectral properties of light and there-

fore varies with depth in the water column. This parameter is

the product of photosynthetic absorption cross section ac(λ),

which is spectrally dependent (λ denotes wavelength), and

quantum yield ϕA (Platt and Jassby, 1976; Platt, 1986):

α(λ)= ac(λ)ϕA. (C7)

Ordinarily (e.g. Table 2), α is presented as the initial slope

of the P -I curve for white light (i.e. spectral distribution as

for irradiance at the ocean surface). The corresponding value

of α for the wavelength at which absorption is maximum,

αmax, is (Anderson, 1993)

αmax = 2.602α. (C8)

The value of α for any given wavelength of PAR, α(λ), is

then

α(λ)= αmaxa · (λ), (C9)

where a∗(λ) is the dimensionless chlorophyll absorption

cross section for wavelength λ. An additional complication,

however, is that a∗(λ) only applies when irradiance is spec-

ified as a scalar flux (Morel, 1991). Irradiance in the model

is a downwelling flux and so Anderson (1993) converted be-

tween the two by defining a new version of the chlorophyll

absorption cross section (which can be used in Eq. (C9) in

place of a∗(λ), in combination with downwelling irradiance):

α#(λ)= a∗(λ)kPAR(λ)/ac(λ). (C10)

Again using the piecewise three-layer scheme described

above for kPAR, an average value of a# can be calculated

for each layer by deriving an empirical approximation of

Morel’s (1988) full spectral model. As a first step, a# at the

ocean surface is calculated as

a#
base,0 = h0+h1C

1/2
+h2C+h3C

3/2
+h4C

2, (C11)
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Table C1. Coefficients for use in the Anderson (1993) calculation of photosynthesis.

h0 = 0.36796

h3 = 0.013528

g1 = 0.048014

g4 = 0.0031095

g7 = 0.00085217

g10 = −0.00061991

�1 = 1.9004

�4 =−0.0014729

h1 = 0.17537

h4 = 0.0011108

g2 = 0.00023779

g5 = −0.0090545

g8 = −3.9804× 10−6

�2 =−0.28333

�5 = 0.000030841

h2 =−0.065276

g3 =−0.023074

g6 = 0.0027974

g9 = 0.0012398

�3 = 0.028050

where the polynomial coefficients are given in Table C1. The

a# at the base of each layer and the average a# in each layer

are then calculated as

a#
base,i = α

#
base,i−1+α

#
calc,i, (C12)

a#
av,i = α

#
base,i−1+ 0.5α#

calc,i, (C13)

where a#
calc,i is a lengthy empirical calculation:

a#
calc,i = f {zbase,i}− f {zbase,i−1}, (C14)

f {z} = (z+ 1)(g1+ g2C
1/2
+ g5C+ g7C

3/2)

+ f1{z+ 1}(g3+ g4C
1/2
+ g9C), (C15)

+ f2{z+ 1}(g6+ g10C)+ f3{z+ 1}g8

f1{z+ 1} = (z+ 1) ln(z+ 1)− (z+ 1), (C16)

f2{z+ 1} = (z+ 1)ln2(z+ 1)− 2f1{z+ 1}, (C17)

f3{z+ 1} = (z+ 1)ln3(z+ 1)− 3f2{z+ 1}. (C18)

The coefficients, gx , are provided in Table C1. With ir-

radiance assumed to vary sinusoidally through the day, the

average rate of photosynthesis within a layer i is

V̄P(H,τ) =
DV max

P

24HπkPAR

5∑
j=1

�j (V
j

1 −V
j

2 ), (C19)

V1 = αmaxa
#
av,iIbase,i−1/V

max
P , (C20)

V2 = αmaxa
#
av,iIbase,i/V

max
P , (C21)

where D is day length (hours) and �j are the polynomial

coefficients (Platt et al., 1990; Table C1).

Appendix D: EMPOWER1.0 user guide

1. Installation and setup. The R programming language is

freeware and is readily downloaded from the Internet

for use on personal computers. For example, visit page

http://www.r-project.org/. After installation, set up a di-

rectory to hold the model code and associated input and

output files. We recommend also downloading an R ed-

itor, e.g, Tinn-R (also freeware).

2. Running R. Open the R console. From the toolbar, select

“File” and “Change dir ...” and select the directory in

which the model code and input files have been placed.

To run the model, type: source(“EMPOWER1.R”)

3. Preparation of input files. The model reads in three input

files, each as ASCII text files.

i. File NPZD_parms.txt. This file includes a single line

header and then lists the value of each model parameter

in turn, followed by a text string for the purpose of anno-

tation. When changing the parameter list in the model,

the corresponding section in the R code must be altered

accordingly.

ii. File NPZD_extra.txt. This file holds initial values for

state variables, additional parameters, and various flags:

choice of station, choices for photosynthesis calcula-

tions (P -I curve, light attenuation, etc.) and grazing for-

mulation. The user is at liberty to add to or remove from

this list of flags as is desired. This file also contains flags

for core model functions: run duration, time step, out-

put type (none, last year, whole simulation), output fre-

quency and integration method (Euler or Runge Kutta).

These latter functions are required by the core code and

should not be removed from this file.

iii. File stations_forcing.txt. This file has a header line for

information and then holds monthly values for forcing,

in our case mixed layer depth and temperature, for each

station. There are 13 entries in each case, the first and

last being the same and corresponding to the beginning

and end of the year. A 366 unit array is set up in the

model code for each forcing variable, with unit 1 cor-

responding to t = 0, and linear interpolation carried out

on the monthly values to fill each array.

4. Output files. These are generated automatically by the

model, on completion of each model simulation. The

type of output generated is controlled by flags (above).

The output files are ASCII, comma separated and do

not have headers. They are readily imported into vari-

ous software packages, e.g. Microsoft Excel, for further

analysis. The files are the following.

i. File out_statevars.txt. Outputs the state variables, or-

dered as they are in array X in the code.
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ii. File out_fluxes.txt. Outputs the model fluxes, ordered

as they are in matrix flux (i,j ) in function FNget_flux.

Thus, each line (corresponding to a point in time for

output) has Nsvar*nfluxmax entries where Nsvar is the

number of state variables in the model and nfluxmax is

the maximum number of fluxes per state variable.

iii. File out_aux.txt. This file stores the values of auxiliary

variables, as defined by the user in array Y (final sec-

tion of function FNget_flux). The maximum size of this

array is set by variable nDvar.

5. Altering the model structure. If the user wants to

change the number of state variables, nDvar or nflux-

max (above), adjustments should first be made to the

short section of code “Variables specific to model: ad-

just accordingly”. Alter nSvar, the initialisation of array

X (which holds the state variables) and the text arrays

Svarname and Svarnames (which are used for output).

Then go to function FNget_flux and rewrite the line of

code unpacking the state variables. Finally, specify the

terms associated with the new state variable(s) in matrix

flux (i,j ).

6. Altering model equations. The model equations are han-

dled in function FNget_flux and can be adjusted as de-

sired by the user, calling additional functions as neces-

sary.

7. Graphical output. The model automatically generates

graphical output on the computer screen on completion

of each simulation. An advantage of R is that the syn-

tax for generating plots is straightforward and the user

should have no problem, working from the plots pro-

vided, in generating extra graphs as desired.

Appendix E: Light attenuation in MEDUSA

Light attenuation in the water column in the MEDUSA

model (Yool et al., 2011, 2013a) is calculated assuming that

PAR at the ocean surface can be divided equally into two

wavebands, nominally red and green. The attenuation of each

is calculated through the water column using Beer’s law. The

average light in a model layer can then be calculated on the

basis of summing the two wavebands, this average is then

used in combination with a P -I curve to calculate photosyn-

thesis. The extinction coefficients for red and green light, xkr

and xkg, are

xkr= xkr0+ xkrp · exp(xlr ln(C)), (E1)

xkg= xkg0+ xkgp · exp(x lg . ln(C)), (E2)

where C is chlorophyll (mg m−3). Values for the coefficients

are xkr0= 0.225, xkrp= 0.037, xlr= 0.674, xkg0= 0.0232,

xkgp= 0.074, and xlg= 0.629.
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The Supplement related to this article is available online

at doi:10.5194/gmd-8-2231-2015-supplement.
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