17 research outputs found

    Characterisation of the Fusarium graminearum-Wheat Floral Interaction.

    Get PDF
    PublishedJournal ArticleFusarium Ear Blight is a destructive fungal disease of cereals including wheat and can contaminate the crop with various trichothecene mycotoxins. This investigation has produced a new β-glucuronidase (GUS) reporter strain that facilitates the quick and easy assessment of plant infection. The constitutively expressed gpdA:GUS strain of Fusarium graminearum was used to quantify the overall colonisation pattern. Histochemical and biochemical approaches confirmed, in susceptible wheat ear infections, the presence of a substantial phase of symptomless fungal growth. Separate analyses demonstrated that there was a reduction in the quantity of physiologically active hyphae as the wheat ear infection proceeded. A simplified linear system of rachis infection was then utilised to evaluate the expression of several TRI genes by RT-qPCR. Fungal gene expression at the advancing front of symptomless infection was compared with the origin of infection in the rachis. This revealed that TRI gene expression was maximal at the advancing front and supports the hypothesis that the mycotoxin deoxynivalenol plays a role in inhibiting plant defences in advance of the invading intercellular hyphae. This study has also demonstrated that there are transcriptional differences between the various phases of fungal infection and that these differences are maintained as the infection proceeds.Chinese governmentBritish Society for Plant Pathology (BSPP)BBSRCEU FP 6 Integrated Project BioexploitSyngent

    3-D Ultrastructure of O. tauri: Electron Cryotomography of an Entire Eukaryotic Cell

    Get PDF
    The hallmark of eukaryotic cells is their segregation of key biological functions into discrete, membrane-bound organelles. Creating accurate models of their ultrastructural complexity has been difficult in part because of the limited resolution of light microscopy and the artifact-prone nature of conventional electron microscopy. Here we explored the potential of the emerging technology electron cryotomography to produce three-dimensional images of an entire eukaryotic cell in a near-native state. Ostreococcus tauri was chosen as the specimen because as a unicellular picoplankton with just one copy of each organelle, it is the smallest known eukaryote and was therefore likely to yield the highest resolution images. Whole cells were imaged at various stages of the cell cycle, yielding 3-D reconstructions of complete chloroplasts, mitochondria, endoplasmic reticula, Golgi bodies, peroxisomes, microtubules, and putative ribosome distributions in-situ. Surprisingly, the nucleus was seen to open long before mitosis, and while one microtubule (or two in some predivisional cells) was consistently present, no mitotic spindle was ever observed, prompting speculation that a single microtubule might be sufficient to segregate multiple chromosomes

    Plant perception of β-aminobutyric acid is mediated by an aspartyl-tRNA synthetase

    Get PDF
    Specific chemicals can prime the plant immune system for augmented defense. β-aminobutyric acid (BABA) is a priming agent that provides broad-spectrum disease protection. However, BABA also suppresses plant growth when applied in high doses, which has hampered its application as a crop defense activator. Here we describe a mutant of Arabidopsis thaliana that is impaired in BABA-induced disease immunity (ibi1) but is hypersensitive to BABA-induced growth repression. IBI1 encodes an aspartyl-tRNA synthetase. Enantiomer-specific binding of the R enantiomer of BABA to IBI1 primed the protein for noncanonical defense signaling in the cytoplasm after pathogen attack. This priming was associated with aspartic acid accumulation and tRNA-induced phosphorylation of translation initiation factor eIF2α. However, mutation of eIF2α-phosphorylating GCN2 kinase did not affect BABA-induced immunity but relieved BABA-induced growth repression. Hence, BABA-activated IBI1 controls plant immunity and growth via separate pathways. Our results open new opportunities to separate broad-spectrum disease resistance from the associated costs on plant growth

    Combined NanoSIMS and synchrotron X-ray fluorescence reveal distinct cellular and subcellular distribution patterns of trace elements in rice tissues.

    Get PDF
    The cellular and subcellular distributions of trace elements can provide important clues to understanding how the elements are transported and stored in plant cells, but mapping their distributions is a challenging task. The distributions of arsenic, iron, zinc, manganese and copper, as well as physiologically related macro-elements, were mapped in the node, internode and leaf sheath of rice (Oryza sativa) using synchrotron X-ray fluorescence (S-XRF) and high-resolution secondary ion mass spectrometry (NanoSIMS). Although copper and silicon generally showed cell wall localization, arsenic, iron and zinc were strongly localized in the vacuoles of specific cell types. Arsenic was highly localized in the companion cell vacuoles of the phloem in all vascular bundles, showing a strong co-localization with sulfur, consistent with As(III)-thiol complexation. Within the node, zinc was localized in the vacuoles of the parenchyma cell bridge bordering the enlarged and diffuse vascular bundles, whereas iron and manganese were localized in the fundamental parenchyma cells, with iron being strongly co-localized with phosphorus in the vacuoles. The highly heterogeneous and contrasting distribution patterns of these elements imply different transport activities and/or storage capacities among different cell types. Sequestration of arsenic in companion cell vacuoles may explain the limited phloem mobility of arsenite

    Loss of the SPHF homologue Slr1768 leads to a catastrophic failure in the maintenance of thylakoid membranes in synechocystis sp. PCC 6803

    Get PDF
    Background: In cyanobacteria the photosystems are localised to, and maintained in, specialist membranes called the thylakoids. The mechanism driving the biogenesis of the thylakoid membranes is still an open question, with only two potential biogenesis factors, Vipp1 and Alb3 currently identified. Methodology/Principal Findings: We generated a slr1768 knockout using the pGEM T-easy vector and REDIRECT. By comparing growth and pigment content (chlorophyll a fluoresence) of the Delta slr1768 mutant with the wild-type, we found that Dslr1768 has a conditional phenotype; specifically under high light conditions (130 mu mol m(-2) s(-1)) thylakoid biogenesis is disrupted leading to cell death on a scale of days. The thylakoids show considerable disruption, with loss of both structure and density, while chlorophyll a density decreases with the loss of thylakoids, although photosynthetic efficiency is unaffected. Under low light (30 mu mol m(-2) s(-1)) the phenotype is significantly reduced, with a growth rate similar to the wildtype and only a low frequency of cells with evident thylakoid disruption. Conclusions/Significance: This is the first example of a gene that affects the maintenance of the thylakoid membranes specifically under high light, and which displays a phenotype dependent on light intensity. Our results demonstrate that Slr1768 has a leading role in acclimatisation, linking light damage with maintenance of the thylakoids

    On the parameterization of biological influences on offshore sand wave dynamics

    Get PDF
    The bed of the North Sea is covered by sand waves and houses a great number of macrobenthic animals. These bio-engineers are known to have a significant influence on the stability of the bed and thereby on the geomorphology of the seabed. This paper proposes a parameterization of these bio-geomorphological interactions. Given the abundance of three dominant bio-engineers on the Dutch Continental Shelf, the predicted occurrence of sand waves, in which the parameterization is included, shows significantly better results, compared to the prediction for the default case without biology. Therefore, the inclusion of biological activity could be important to predict the occurrence of sand waves.

    Thylakoid membrane perforations and connectivity enable intracellular traffic in cyanobacteria

    No full text
    Cyanobacteria, the progenitors of plant and algal chloroplasts, enabled aerobic life on earth by introducing oxygenic photosynthesis. In most cyanobacteria, the photosynthetic membranes are arranged in multiple, seemingly disconnected, concentric shells. In such an arrangement, it is unclear how intracellular trafficking proceeds and how different layers of the photosynthetic membranes communicate with each other to maintain photosynthetic homeostasis. Using electron microscope tomography, we show that the photosynthetic membranes of two distantly related cyanobacterial species contain multiple perforations. These perforations, which are filled with particles of different sizes including ribosomes, glycogen granules and lipid bodies, allow for traffic throughout the cell. In addition, different layers of the photosynthetic membranes are joined together by internal bridges formed by branching and fusion of the membranes. The result is a highly connected network, similar to that of higher-plant chloroplasts, allowing water-soluble and lipid-soluble molecules to diffuse through the entire membrane network. Notably, we observed intracellular membrane-bounded vesicles, which were frequently fused to the photosynthetic membranes and may play a role in transport to these membranes
    corecore