71 research outputs found

    Backbone resonance assignments of the monomeric DUF59 domain of human Fam96a

    Get PDF
    Proteins containing a domain of unknown function 59 (DUF59) appear to have a variety of physiological functions, ranging from iron-sulfur cluster assembly to DNA repair. DUF59 proteins have been found in bacteria, archaea and eukaryotes, however Fam96a and Fam96b are the only mammalian proteins predicted to contain a DUF59 domain. Fam96a is an 18 kDa protein comprised primarily of a DUF59 domain (residues 31-157) and an N-terminal signal peptide (residues 1-27). Interestingly, the DUF59 domain of Fam96a exists as monomeric and dimeric forms in solution, and X-ray crystallography studies of both forms unexpectedly revealed two different domain-swapped dimer structures. Here we report the backbone resonance assignments and secondary structure of the monomeric form of the 127 residue DUF59 domain of human Fam96a. This study provides the basis for further understanding the structural variability exhibited by Fam96a and the mechanism for domain swapping

    Lectin-like bacteriocins from pseudomonas spp. utilise D-rhamnose containing lipopolysaccharide as a cellular receptor

    Get PDF
    Lectin-like bacteriocins consist of tandem monocot mannose-binding domains and display a genus-specific killing activity. Here we show that pyocin L1, a novel member of this family from Pseudomonas aeruginosa, targets susceptible strains of this species through recognition of the common polysaccharide antigen (CPA) of P. aeruginosa lipopolysaccharide that is predominantly a homopolymer of d-rhamnose. Structural and biophysical analyses show that recognition of CPA occurs through the C-terminal carbohydrate-binding domain of pyocin L1 and that this interaction is a prerequisite for bactericidal activity. Further to this, we show that the previously described lectin-like bacteriocin putidacin L1 shows a similar carbohydrate-binding specificity, indicating that oligosaccharides containing d-rhamnose and not d-mannose, as was previously thought, are the physiologically relevant ligands for this group of bacteriocins. The widespread inclusion of d-rhamnose in the lipopolysaccharide of members of the genus Pseudomonas explains the unusual genus-specific activity of the lectin-like bacteriocins

    GalNAc/Gal-Binding Rhizoctonia solani Agglutinin Has Antiproliferative Activity in Drosophila melanogaster S2 Cells via MAPK and JAK/STAT Signaling

    Get PDF
    Rhizoctonia solani agglutinin, further referred to as RSA, is a lectin isolated from the plant pathogenic fungus Rhizoctonia solani. Previously, we reported a high entomotoxic activity of RSA towards the cotton leafworm Spodoptera littoralis. To better understand the mechanism of action of RSA, Drosophila melanogaster Schneider S2 cells were treated with different concentrations of the lectin and FITC-labeled RSA binding was examined using confocal fluorescence microscopy. RSA has antiproliferative activity with a median effect concentration (EC50) of 0.35 µM. In addition, the lectin was typically bound to the cell surface but not internalized. In contrast, the N-acetylglucosamine-binding lectin WGA and the galactose-binding lectin PNA, which were both also inhibitory for S2 cell proliferation, were internalized whereas the mannose-binding lectin GNA did not show any activity on these cells, although it was internalized. Extracted DNA and nuclei from S2 cells treated with RSA were not different from untreated cells, confirming inhibition of proliferation without apoptosis. Pre-incubation of RSA with N-acetylgalactosamine clearly inhibited the antiproliferative activity by RSA in S2 cells, demonstrating the importance of carbohydrate binding. Similarly, the use of MEK and JAK inhibitors reduced the activity of RSA. Finally, RSA affinity chromatography of membrane proteins from S2 cells allowed the identification of several cell surface receptors involved in both signaling transduction pathways

    Farseer-NMR: automatic treatment, analysis and plotting of large, multi-variable NMR data

    Get PDF
    We present Farseer-NMR (https://git.io/vAueU), a software package to treat, evaluate and combine NMR spectroscopic data from sets of protein-derived peaklists covering a range of experimental conditions. The combined advances in NMR and molecular biology enable the study of complex biomolecular systems such as flexible proteins or large multibody complexes, which display a strong and functionally relevant response to their environmental conditions, e.g. the presence of ligands, site-directed mutations, post translational modifications, molecular crowders or the chemical composition of the solution. These advances have created a growing need to analyse those systems’ responses to multiple variables. The combined analysis of NMR peaklists from large and multivariable datasets has become a new bottleneck in the NMR analysis pipeline, whereby information-rich NMR-derived parameters have to be manually generated, which can be tedious, repetitive and prone to human error, or even unfeasible for very large datasets. There is a persistent gap in the development and distribution of software focused on peaklist treatment, analysis and representation, and specifically able to handle large multivariable datasets, which are becoming more commonplace. In this regard, Farseer-NMR aims to close this longstanding gap in the automated NMR user pipeline and, altogether, reduce the time burden of analysis of large sets of peaklists from days/weeks to seconds/minutes. We have implemented some of the most common, as well as new, routines for calculation of NMR parameters and several publication-quality plotting templates to improve NMR data representation. Farseer-NMR has been written entirely in Python and its modular code base enables facile extension

    Increased dynamics in the 40-57 Ω-loop of the G41S variant of human cytochrome c promote its pro-apoptotic conformation

    Get PDF
    Thrombocytopenia 4 is an inherited autosomal dominant thrombocytopenia, which occurs due to mutations in the human gene for cytochrome c that results in enhanced mitochondrial apoptotic activity. The Gly41Ser mutation was the first to be reported. Here we report stopped-flow kinetic studies of azide binding to human ferricytochrome c and its Gly41Ser variant, together with backbone amide H/D exchange and 15N-relaxation dynamics using NMR spectroscopy, to show that alternative conformations are kinetically and thermodynamically more readily accessible for the Gly41Ser variant than for the wild-type protein. Our work reveals a direct conformational link between the 40-57 Ω-loop in which residue 41 resides and the dynamical properties of the axial ligand to the heme iron, Met80, such that the replacement of glycine by serine promotes the dissociation of the Met80 ligand, thereby increasing the population of a peroxidase active state, which is a key non-native conformational state in apoptosis

    Membrane remodeling by the M2 amphipathic helix drives influenza virus membrane scission

    Get PDF
    Membrane scission is a crucial step in all budding processes, from endocytosis to viral budding. Many proteins have been associated with scission, though the underlying molecular details of how scission is accomplished often remain unknown. Here, we investigate the process of M2-mediated membrane scission during the budding of influenza viruses. Residues 50–61 of the viral M2 protein bind membrane and form an amphipathic α-helix (AH). Membrane binding requires hydrophobic interactions with the lipid tails but not charged interactions with the lipid headgroups. Upon binding, the M2AH induces membrane curvature and lipid ordering, constricting and destabilizing the membrane neck, causing scission. We further show that AHs in the cellular proteins Arf1 and Epsin1 behave in a similar manner. Together, they represent a class of membrane-induced AH domains that alter membrane curvature and fluidity, mediating the scission of constricted membrane necks in multiple biological pathways

    Smart Contracts und Smart Payment im Farming 4.0

    No full text
    In diesem Beitrag wird dargelegt, wie Digitalisierung von Geschäftsprozessen am Beispiel der Zusammenarbeit zwischen Landwirten, Lohnunternehmen, Betreibern von Biogasanlagen und Finanzdienstleistern in der Landwirtschaft erfolgen kann. Hierbei sind die sichere Vernetzung, die Datentransparenz und die nachvollziehbare Speicherung von Prozessänderungen von zentraler Bedeutung. Ein wichtiger Ansatz für die Digitalisierung der unternehmensübergreifenden Zusammenarbeit ist die Weiterentwicklung und Anwendung der Blockchain-Technologie für den betrachteten landwirtschaftlichen Anwendungsfall. Aufbauend auf der Blockchain-Technologie wird in diesem Beitrag ein Ansatz zur Automatisierung mithilfe von Smart Contracts und Smart Objects vorgestellt. Neben dem Tracking des Ernte- und Transportprozesses liegt der Fokus insbesondere auf der Anbindung einer Payment-Plattform an die Blockchain und dem entsprechenden Regelwerk, welches mittels Smart Contracts eine automatisierte und papierlose Transaktion ermöglicht. Zur Prozessbeschleunigung und zur automatischen Prozessüberwachung werden die Landmaschinen in der logistischen Kette mit dezentralen Steuereinheiten (Smart Objects) ausgerüstet
    • …
    corecore