103 research outputs found
Human Coronary Artery Remodeling, Beginning and End of the Atherosclerotic Process
BACKGROUND, AIMS OF THE STUDY: The objective of the study was to relate the progress of coronary artery remodeling to the earliest stages of the atherosclerotic process. For this purpose, a mathematical model for description of dimensional change of the coronary artery wall and its constituent components was developed and applied. MATERIALS AND METHODS: The study used coronary artery samples randomly taken from each of 83 consecutive, unselected postmortems. All samples were routinely fixed and processed to paraffin for the preparation of right-angled, 5-micron sections, routinely stained and mounted for subsequent analysis. Computer assisted image analysis, using 32 systematic random, radial sampling lines, was used for interactive measurements of distance from centre of lumen to points defining intima, media and adventitia thickness along the radial intercept, which were subsequently tabled for analysis of variance, calculations of (group –vessel) means, and related to stage of pathology. RESULTS: Pre-atherosclerotic changes, before any localised changes in especially intima dimensions, are found, consisting of a process of gradual vascular widening, associated with temporally at least partly dissociated increases in width, which as a fraction of total vessel radius show a phased process. In these, the intima first increases, subsequently remains stable, and finally reduces in width proportionally to the increasing diameter. The media shows a similar initial increase, on average stabilising in the third phase after reaching a plateau value in the second. The adventitia, already increasing in phase 1, continues to increase in phase 2, accelerating in phase 3. The complex process, as found, occurs systematically in all vessels, is distributed circumferentially, and precedes the development of localised lesions of the intima. CONCLUSIONS: The findings suggest the existence of a diffuse complex of changes, consisting of a gradual vascular widening followed by narrowing, with associated mural changes reflecting the atherosclerotic process
Ventricular conduction stability noninvasively identifies an arrhythmic substrate in survivors of idiopathic ventricular fibrillation
Background Idiopathic ventricular fibrillation (VF) is a diagnosis of exclusion following normal cardiac investigations. We sought to determine if exercise-induced changes in electrical substrate could distinguish patient groups with various ventricular arrhythmic pathophysiological conditions and identify patients susceptible to VF. Methods and Results Computed tomography and exercise testing in patients wearing a 252-electrode vest were combined to determine ventricular conduction stability between rest and peak exercise, as previously described. Using ventricular conduction stability, conduction heterogeneity in idiopathic VF survivors (n=14) was compared with those surviving VF during acute ischemia with preserved ventricular function following full revascularization (n=10), patients with benign ventricular ectopy (n=11), and patients with normal hearts, no arrhythmic history, and negative Ajmaline challenge during Brugada family screening (Brugada syndrome relatives; n=11). Activation patterns in normal subjects (Brugada syndrome relatives) are preserved following exercise, with mean ventricular conduction stability of 99.2±0.9%. Increased heterogeneity of activation occurred in the idiopathic VF survivors (ventricular conduction stability: 96.9±2.3%) compared with the other groups combined (versus 98.8±1.6%; P=0.001). All groups demonstrated periodic variation in activation heterogeneity (frequency, 0.3-1 Hz), but magnitude was greater in idiopathic VF survivors than Brugada syndrome relatives or patients with ventricular ectopy (7.6±4.1%, 2.9±2.9%, and 2.8±1.2%, respectively). The cause of this periodicity is unknown and was not replicable by introducing exercise-induced noise at comparable frequencies. Conclusions In normal subjects, ventricular activation patterns change little with exercise. In contrast, patients with susceptibility to VF experience activation heterogeneity following exercise that requires further investigation as a testable manifestation of underlying myocardial abnormalities otherwise silent during routine testing
Recommended from our members
Linking farmer and beekeeper preferences with ecological knowledge to improve crop pollination
1. Pollination by insects is a key input into many crops, with managed honeybees often being hired to support pollination services. Despite substantial research into pollination management, no European studies have yet explored how and why farmers managed pollination services and few have explored why beekeepers use certain crops.
2. Using paired surveys of beekeepers and farmers in 10 European countries, this study examines beekeeper and farmer perceptions and motivations surrounding crop pollination.
3. Almost half of the farmers surveyed believed they had pollination service deficits in one or more of their crops.
4. Less than a third of farmers hired managed pollinators, however most undertook at least one form of agri-environment management known to benefit pollinators, although few did so to promote pollinators.
5. Beekeepers were ambivalent towards many mass flowering crops, with some beekeepers using crops for their honey that other beekeepers avoid because of perceived pesticide risks.
6. The findings highlight a number of largely overlooked knowledge gaps that will affect knowledge exchange and co-operation between the two groups
Narrowband Biphotons: Generation, Manipulation, and Applications
In this chapter, we review recent advances in generating narrowband biphotons
with long coherence time using spontaneous parametric interaction in monolithic
cavity with cluster effect as well as in cold atoms with electromagnetically
induced transparency. Engineering and manipulating the temporal waveforms of
these long biphotons provide efficient means for controlling light-matter
quantum interaction at the single-photon level. We also review recent
experiments using temporally long biphotons and single photons.Comment: to appear as a book chapter in a compilation "Engineering the
Atom-Photon Interaction" published by Springer in 2015, edited by A.
Predojevic and M. W. Mitchel
Current cardiac imaging techniques for detection of left ventricular mass
Estimation of left ventricular (LV) mass has both prognostic and therapeutic value independent of traditional risk factors. Unfortunately, LV mass evaluation has been underestimated in clinical practice. Assessment of LV mass can be performed by a number of imaging modalities. Despite inherent limitations, conventional echocardiography has fundamentally been established as most widely used diagnostic tool. 3-dimensional echocardiography (3DE) is now feasible, fast and accurate for LV mass evaluation. 3DE is also superior to conventional echocardiography in terms of LV mass assessment, especially in patients with abnormal LV geometry. Cardiovascular magnetic resonance (CMR) and cardiovascular computed tomography (CCT) are currently performed for LV mass assessment and also do not depend on cardiac geometry and display 3-dimensional data, as well. Therefore, CMR is being increasingly employed and is at the present standard of reference in the clinical setting. Although each method demonstrates advantages over another, there are also disadvantages to receive attention. Diagnostic accuracy of methods will also be increased with the introduction of more advanced systems. It is also likely that in the coming years new and more accurate diagnostic tests will become available. In particular, CMR and CCT have been intersecting hot topic between cardiology and radiology clinics. Thus, good communication and collaboration between two specialties is required for selection of an appropriate test
Effect of cellular and extracellular pathology assessed by T1 mapping on regional contractile function in hypertrophic cardiomyopathy
Background Regional contractile dysfunction is a frequent finding in hypertrophic cardiomyopathy (HCM). We aimed to investigate the contribution of different tissue characteristics in HCM to regional contractile dysfunction. Methods We prospectively recruited 50 patients with HCM who underwent cardiovascular magnetic resonance (CMR) studies at 3.0 T including cine imaging, T1 mapping and late gadolinium enhancement (LGE) imaging. For each segment of the American Heart Association model segment thickness, native T1, extracellular volume (ECV), presence of LGE and regional strain (by feature tracking and tissue tagging) were assessed. The relationship of segmental function, hypertrophy and tissue characteristics were determined using a mixed effects model, with random intercept for each patient. Results Individually segment thickness, native T1, ECV and the presence of LGE all had significant associations with regional strain. The first multivariable model (segment thickness, LGE and ECV) demonstrated that all strain parameters were associated with segment thickness (P < 0.001 for all) but not ECV. LGE (Beta 2.603, P = 0.024) had a significant association with circumferential strain measured by tissue tagging. In a second multivariable model (segment thickness, LGE and native T1) all strain parameters were associated with both segment thickness (P < 0.001 for all) and native T1 (P < 0.001 for all) but not LGE. Conclusion Impairment of contractile function in HCM is predominantly associated with the degree of hypertrophy and native T1 but not markers of extracellular fibrosis (ECV or LGE). These findings suggest that impairment of contractility in HCM is mediated by mechanisms other than extracellular expansion that include cellular changes in structure and function. The cellular mechanisms leading to increased native T1 and its prognostic significance remain to be established
Assessment of coronary atherosclerosis by IVUS and IVUS-based imaging modalities: progression and regression studies, tissue composition and beyond
Cardiovascular disease remains the leading cause of mortality, morbidity and disability in the developed world, predominantly affecting the adult population. In the early 1990s coronary heart disease (CHD) was established as affecting one in two men and one in three women by the age of forty. Despite the dramatic progress in the field of cardiovascular medicine in terms of diagnosis and treatment of heart disease, modest improvements have only been achieved when the reduction of cardiovascular mortality and morbidity indices are assessed. To better understand coronary atherosclerosis, new imaging modalities have been introduced. These novel imaging modalities have been used in two ways: (1) for the characterization of plaque types; (2) for the assessment of the progression and regression of tissue types. These two aspects will be discussed in this review
Action ability modulates time‑to‑collision judgments
Time-to-collision (TTC) underestimation has been interpreted as an adaptive response that allows observers to have more time to engage in a defensive behaviour. This bias seems, therefore, strongly linked to action preparation. There is evidence that the observer’s physical fitness modulates the underestimation effect so that people who need more time to react (i.e. those with less physical fitness) show a stronger underestimation effect. Here we investigated whether this bias is influenced by the momentary action capability of the observers. In the first experiment, participants estimated the time-to-collision of threatening or non-threatening stimuli while being mildly immobilized (with a chin rest) or while standing freely. Having reduced the possibility of movement led participants to show more underestimation of the approaching stimuli. However, this effect was not stronger for threatening relative to non-threatening stimuli. The effect of the action capability found in the first experiment could be interpreted as an expansion of peripersonal space (PPS). In the second experiment, we thus investigated the generality of this effect using an established paradigm to measure the size of peripersonal space. Participants bisected lines from different distances while in the chin rest or standing freely. The results replicated the classic left-to-right gradient in lateral spatial attention with increasing viewing distance, but no effect of immobilization was found. The manipulation of the momentary action capability of the observers influenced the participants’ performance in the TTC task but not in the line bisection task. These results are discussed in relation to the different functions of PPS
- …