219 research outputs found

    Vacuum Stability of the wrong sign (βˆ’Ο•6)(-\phi^{6}) Scalar Field Theory

    Full text link
    We apply the effective potential method to study the vacuum stability of the bounded from above (βˆ’Ο•6)(-\phi^{6}) (unstable) quantum field potential. The stability (βˆ‚E/βˆ‚b=0)\partial E/\partial b=0) and the mass renormalization (βˆ‚2E/βˆ‚b2=M2)\partial^{2} E/\partial b^{2}=M^{2}) conditions force the effective potential of this theory to be bounded from below (stable). Since bounded from below potentials are always associated with localized wave functions, the algorithm we use replaces the boundary condition applied to the wave functions in the complex contour method by two stability conditions on the effective potential obtained. To test the validity of our calculations, we show that our variational predictions can reproduce exactly the results in the literature for the PT\mathcal{PT}-symmetric Ο•4\phi^{4} theory. We then extend the applications of the algorithm to the unstudied stability problem of the bounded from above (βˆ’Ο•6)(-\phi^{6}) scalar field theory where classical analysis prohibits the existence of a stable spectrum. Concerning this, we calculated the effective potential up to first order in the couplings in dd space-time dimensions. We find that a Hermitian effective theory is instable while a non-Hermitian but PT\mathcal{PT}-symmetric effective theory characterized by a pure imaginary vacuum condensate is stable (bounded from below) which is against the classical predictions of the instability of the theory. We assert that the work presented here represents the first calculations that advocates the stability of the (βˆ’Ο•6)(-\phi^{6}) scalar potential.Comment: 21pages, 12 figures. In this version, we updated the text and added some figure

    Expression of chimeric HCV peptide in transgenic tobacco plants infected with recombinant alfalfa mosaic virus for development of a plant-derived vaccine against HCV

    Get PDF
    Hepatitis C virus (HCV) is the major etiologic agent of blood transfusion–associated and sporadic non-A non-B hepatitis affecting more than 180 million worldwide. Vaccine development for HCV has been difficult and there is no vaccine or effective therapy against this virus. In this paper, we describe the development of an experimental plant-derived subunit vaccine against HCV. Our subunit vaccine originates from a consensus HCV-HVR1 epitope (R9) that antigenically mimics many natural HVR1 variants. This HVR1 sequence was cloned into the open reading frame of a plant virus, Alfalfa Mosaic Virus (ALMV) coat protein (CP). The chimeric ALMV RNA4 containing sequence-encoding R9 epitope was introduced into full-length infectious ALMV-RNA3 that was utilized as an expression vector. The recombinant chimeric protein is expressed in transgenic tobacco plants (P12) expressing ALMV RNA1 and 2. Plant–derived HVR1/ALMV-CP reacted with HVR1 and/or ALMV-CP specific monoclonal antibodies and immune sera from individuals infected with HCV. Using plant-virus based transient expression to produce this unique chimeric antigen will facilitate the development and production of an experimental HCV vaccine. A plant derived recombinant HCV vaccine can potentially reduce expenses normally associated with production and delivery of conventional vaccine. Key Words: Hepatitis C virus (HCV), transgenic tobacco plants (P12), consensus HCV HVR1 epitope (R9), and chimeric ALMV-RNA4. African Journal of Biotechnology Vol.3(11) 2004: 588-59

    RHPS4 G-quadruplex ligand induces anti-proliferative effects in brain tumor cells

    Get PDF
    Background Telomeric 3’ overhangs can fold into a four-stranded DNA structure termed G-quadruplex (G4), a formation which inhibits telomerase. As telomerase activation is crucial for telomere maintenance in most cancer cells, several classes of G4 ligands have been designed to directly disrupt telomeric structure. Methods We exposed brain tumor cells to the G4 ligand 3,11-difluoro-6,8,13-trimethyl-8H-quino[4,3,2-kl]acridinium methosulfate (RHPS4) and investigated proliferation, cell cycle dynamics, telomere length, telomerase activity and activated c-Myc levels. Results Although all cell lines tested were sensitive to RHPS4, PFSK-1 central nervous system primitive neuroectodermal cells, DAOY medulloblastoma cells and U87 glioblastoma cells exhibited up to 30-fold increased sensitivity compared to KNS42 glioblastoma, C6 glioma and Res196 ependymoma cells. An increased proportion of S-phase cells were observed in medulloblastoma and high grade glioma cells whilst CNS PNET cells showed an increased proportion of G1-phase cells. RHPS4-induced phenotypes were concomitant with telomerase inhibition, manifested in a telomere length-independent manner and not associated with activated c-Myc levels. However, anti-proliferative effects were also observed in normal neural/endothelial cells in vitro and ex vivo. Conclusion This study warrants in vivo validation of RHPS4 and alternative G4 ligands as potential anti-cancer agents for brain tumors but highlights the consideration of dose-limiting tissue toxicities

    Effects of oestradiol and tamoxifen on VEGF, soluble VEGFR-1, and VEGFR-2 in breast cancer and endothelial cells

    Get PDF
    Angiogenesis is regulated by the balance between pro- and antiangiogenic factors. Vascular endothelial growth factor (VEGF), acting via the receptors VEGFR-1 and VEGFR-2, is a key mediator of tumour angiogenesis. The soluble form of the VEGF receptor-1 (sVEGFR-1) is an important negative regulator of VEGF-mediated angiogenesis. The majority of breast cancers are oestrogen dependent, but it is not fully understood how oestrogen and the antioestrogen, tamoxifen, affect the balance of angiogenic factors. Angiogenesis is a result of the interplay between cancer and endothelial cells, and sex steroids may exert effects on both cell types. In this study we show that oestradiol decreased secreted sVEGFR-1, increased secreted VEGF, and decreased the ratio of sVEGFR-1/VEGF in MCF-7 human breast cancer cells. The addition of tamoxifen opposed these effects. Moreover, human umbilical vein endothelial cells (HUVEC) incubated with supernatants from oestradiol-treated MCF-7 cells exhibited higher VEGFR-2 levels than controls. In vivo, MCF-7 tumours from oestradiol+tamoxifen-treated nude mice exhibited decreased tumour vasculature. Our results suggest that tamoxifen and oestradiol exert dual effects on the angiogenic environment in breast cancer by regulating cancer cell-secreted angiogenic ligands such as VEGF and sVEGFR-1 and by affecting VEGFR-2 expression of endothelial cells

    Efficacy and Safety of Artemether in the Treatment of Chronic Fascioliasis in Egypt: Exploratory Phase-2 Trials

    Get PDF
    Fasciola hepatica and F. gigantica are two liver flukes that parasitize herbivorous large size mammals (e.g., sheep and cattle), as well as humans. A single drug is available to treat infections with Fasciola flukes, namely, triclabendazole. Recently, laboratory studies and clinical trials in sheep and humans suffering from acute fascioliasis have shown that artesunate and artemether (drugs that are widely used against malaria) also show activity against fascioliasis. Hence, we were motivated to assess the efficacy and safety of oral artemether in patients with chronic Fasciola infections. The study was carried out in Egypt and artemether administered according to two different malaria treatment regimens. Cure rates observed with 6Γ—80 mg and 3Γ—200 mg artemether were 35% and 6%, respectively. In addition, high efficacy was observed when triclabendazole, the current drug of choice against human fascioliasis, was administered to patients remaining Fasciola positive following artemether treatment. Concluding, monotherapy with artemether does not represent an alternative to triclabendazole against fascioliasis, but its role in combination chemotherapy regimen remains to be investigated

    VEGF-A isoforms differentially regulate ATF-2-dependent VCAM-1 gene expression and endothelial-leukocyte interactions

    Get PDF
    Vascular endothelial growth factor A (VEGF-A) regulates many aspects of vascular physiology. VEGF-A stimulates signal transduction pathways that modulate endothelial outputs such as cell migration, proliferation, tubulogenesis, and cell-cell interactions. Multiple VEGF-A isoforms exist, but the biological significance of this is unclear. Here we analyzed VEGF-A isoform-specific stimulation of VCAM-1 gene expression, which controls endothelial-leukocyte interactions, and show that this is dependent on both ERK1/2 and activating transcription factor-2 (ATF-2). VEGF-A isoforms showed differential ERK1/2 and p38 MAPK phosphorylation kinetics. A key feature of VEGF-A isoform-specific ERK1/2 activation and nuclear translocation was increased phosphorylation of ATF-2 on threonine residue 71 (T71). Using reverse genetics, we showed ATF-2 to be functionally required for VEGF-A-stimulated endothelial VCAM-1 gene expression. ATF-2 knockdown blocked VEGF-A-stimulated VCAM-1 expression and endothelial-leukocyte interactions. ATF-2 was also required for other endothelial cell outputs, such as cell migration and tubulogenesis. In contrast, VCAM-1 was essential only for promoting endothelial-leukocyte interactions. This work presents a new paradigm for understanding how soluble growth factor isoforms program complex cellular outputs and responses by modulating signal transduction pathways

    Essential Role of Chromatin Remodeling Protein Bptf in Early Mouse Embryos and Embryonic Stem Cells

    Get PDF
    We have characterized the biological functions of the chromatin remodeling protein Bptf (Bromodomain PHD-finger Transcription Factor), the largest subunit of NURF (Nucleosome Remodeling Factor) in a mammal. Bptf mutants manifest growth defects at the post-implantation stage and are reabsorbed by E8.5. Histological analyses of lineage markers show that Bptfβˆ’/βˆ’ embryos implant but fail to establish a functional distal visceral endoderm. Microarray analysis at early stages of differentiation has identified Bptf-dependent gene targets including homeobox transcriptions factors and genes essential for the development of ectoderm, mesoderm, and both definitive and visceral endoderm. Differentiation of Bptfβˆ’/βˆ’ embryonic stem cell lines into embryoid bodies revealed its requirement for development of mesoderm, endoderm, and ectoderm tissue lineages, and uncovered many genes whose activation or repression are Bptf-dependent. We also provide functional and physical links between the Bptf-containing NURF complex and the Smad transcription factors. These results suggest that Bptf may co-regulate some gene targets of this pathway, which is essential for establishment of the visceral endoderm. We conclude that Bptf likely regulates genes and signaling pathways essential for the development of key tissues of the early mouse embryo

    Endogenous VEGF Is Required for Visual Function: Evidence for a Survival Role on MΓΌller Cells and Photoreceptors

    Get PDF
    Vascular endothelial growth factor (VEGF) is well known for its role in normal and pathologic neovascularization. However, a growing body of evidence indicates that VEGF also acts on non-vascular cells, both developmentally as well as in the adult. In light of the widespread use of systemic and intraocular anti-VEGF therapies for the treatment of angiogenesis associated with tumor growth and wet macular degeneration, systematic investigation of the role of VEGF in the adult retina is critical.Using immunohistochemistry and Lac-Z reporter mouse lines, we report that VEGF is produced by various cells in the adult mouse retina and that VEGFR2, the primary signaling receptor, is also widely expressed, with strong expression by MΓΌller cells and photoreceptors. Systemic neutralization of VEGF was accomplished in mice by adenoviral expression of sFlt1. After 14 days of VEGF neutralization, there was no effect on the inner and outer retina vasculature, but a significant increase in apoptosis of cells in the inner and outer nuclear layers. By four weeks, the increase in neural cell death was associated with reduced thickness of the inner and outer nuclear layers and a decline in retinal function as measured by electroretinograms. siRNA-based suppression of VEGF expression in a MΓΌller cell line in vitro supports the existence of an autocrine role for VEGF in MΓΌller cell survival. Similarly, the addition of exogenous VEGF to freshly isolated photoreceptor cells and outer-nuclear-layer explants demonstrated VEGF to be highly neuroprotective.These results indicate an important role for endogenous VEGF in the maintenance and function of adult retina neuronal cells and indicate that anti-VEGF therapies should be administered with caution
    • …
    corecore