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Abstract Pipe bends, often referred to as ‘‘elbows’’, are special pipeline components,

widely used in onshore buried steel pipelines. They are sensitive to imposed deformations

and their structural behavior is quite flexible and associated with the development of

significant stress and strain, which may lead to failure. In the present paper, the mechanical

performance of buried steel pipeline bends is investigated first, using rigorous finite ele-

ment models that account for the pipe-soil interface. Three 36-inch-diameter pipe elbows

are considered, subjected to pull-out force and embedded in cohesive soils. The

elbows have bend angles equal to 90�, 60� and 30�, and bend radius-over-diameter ratio

(R/D) equal to 5. The results show the increased flexibility of the pipeline bend with

respect to the straight pipe, and are reported in the form of force–displacement diagrams.

Furthermore the deformation limits of each elbow are identified in terms of appropriate

performance criteria. The second part of the paper investigates the effect of pipe bends on

the response of pipelines crossing active faults using a three-dimensional rigorous finite

element model. The numerical results refer to a 36-inch-diameter pipeline crossing a

strike-slip fault, and show that the unique mechanical response of pipe bends, in terms of

their flexibility, may offer an efficient tool for reducing ground-induced deformations. The

three-dimensional model employs the load–displacement curves of the first part of the

paper as end conditions through nonlinear springs. Furthermore, the results show that there

exist an optimum distance of the elbow from the fault plane, which corresponds to the

maximum allowable ground displacement. Therefore, pipeline elbows, if appropriately

placed, can be employed as ‘‘mitigating devices’’, reducing ground-induced action on the

pipeline at fault crossings.
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1 Introduction

Pipe bends (elbows) are widely used in industrial steel piping and steel pipelines. In

industrial applications, piping systems contain mainly 90� bends, as shown in Fig. 1a. In

industrial piping systems, bends are mainly used because of their flexibility, which allows

for the accommodation of thermal expansions and the absorption of other externally-

induced loads on the piping system. Furthermore, under severe loading conditions, pipe

elbows exhibit significant cross-sectional distortion (ovalization), associated with strains

well beyond the elastic limit and may fail because of local buckling or the development of

significant tensile local strains that may cause pipe wall rupture.

There exist numerous experimental and numerical publications on the mechanical

behavior of pipe bends for industrial piping applications. Sobel and Newman (1980, 1986)

and Dhalla (1987) reported experimental data on the elastic–plastic bending response of

elbows through a series of tests on 16-inch 90� elbows (D/t = 39 and R/r = 3) under in-

plane closing moments, supported by numerical and analytical results. Gresnigt et al.

(1986) reported test data on 30�, 60� and 90� steel elbows with R/r = 6 under in-plane and

out-of-plane bending, in the presence of internal pressure. In subsequent publications,

Gresnigt (1986) and Gresnigt and Van Foeken (1995) have proposed an analytical model

for the elastic–plastic cross-sectional analysis of elbows. Greenstreet (1978) investigated

experimentally the response of carbon steel and stainless steel pipe elbows, subjected to in-

plane and out-of-plane bending loading conditions, in the presence of internal pressure.

Hilsenkopf et al. (1988) reported test data on thin-walled stainless steel elbows (D/

t = 89.5) and thick-walled ferritic elbows (D/t = 13.4), under both in-plane and out-of-

plane bending. Suzuki and Nasu (1989) reported two in-plane closing moment tests on 90�
elbows (D/t = 46.3 and 64.9) and compared the test data with numerical predictions from

four-node shell element analysis. Tan et al. (2002) reported two in-plane moment tests on

90� thick stainless steel elbows with D/t equal to 10.5.

Fig. 1 Steel pipe bends (elbows) employed; a in industrial steel piping and b in buried steel pipelines
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Notable numerical works on the elastic–plastic response of steel elbows for industrial

piping applications have been reported by Shaleby and Younan (1998, 1999) and Mourad

and Younan (2001, 2002) on standalone pressurized 90� steel elbows (R/r = 3) subjected

to in-plane and out-of-plane bending respectively, for a wide range of diameter-to-thick-

ness ratios (15.5 B D/t B 97), but neglecting the effects of the adjacent straight parts.

Chattopadhyay et al. (2000) analyzed thick-walled 90� elbows (D/t B 25) under in-plane

bending, using twenty-node solid elements, and accounting for the effects of the adjacent

straight parts. They proposed simplified formulae for the moment capacity of elbows in

terms of internal pressure. Karamanos et al. (2003, 2006) have presented numerical studies

for pressurized and non-pressurized steel elbow response under in-plane and out-of-plane

bending, with emphasis on the buckling failure, and a good comparison between numerical

results and the test data reported in Gresnigt et al. (1986) was found. More recently, in the

course of European research program INDUSE (Pappa et al. 2013), motivated by the

seismic integrity of industrial plants, the response of pipe elbows under strong cyclic

loading has been investigated (Varelis et al. 2013; Varelis and Karamanos 2015) experi-

mentally, conducting tests on 8-inch-diameter SCH40 long radius 90� X52 elbows, leading

to low-cycle fatigue fracture. The tests in Varelis et al. (2013) and Varelis and Karamanos

(2015) were also supported by extensive numerical simulations that employed advanced

cyclic plasticity models, also reported in Varelis et al. (2013) and Varelis and Karamanos

(2015), and simplified analytical methodologies for the low-cycle fatigue design of the

elbows. For an overview on the mechanical behavior of steel pipe bends, the reader is

referred to the recent paper by Karamanos (2016).

Apart from their use in industrial applications, pipe bends are also employed in buried

pipelines (Fig. 1b), mainly for the purpose of changing direction in pipeline alignment.

Interesting work on soil-pipe interaction behavior of buried pipelines with 90� elbows has

been reported by Yoshizaki et al. (2000, 2003); a series of tests on stand-alone elbows has

been reported in Yoshizaki et al. (2000), followed by finite element simulations, whereas in

Yoshizaki et al. (2003), experiments on 100-mm-diameter 4.1-mm-thick 90� pipe elbows

have been reported, also supported by finite element calculations, which employed shell

elements and nonlinear springs. In a more recent publication, Suzuki et al. (2014) reported

experimental works on stand-alone cold-formed low-angle elbows, followed by a finite

element simulation to determine numerically their bending deformation limits. In addition,

the response of those elbows has been investigated analytically, being located in the center

of a lateral spreading zone, and assuming a sinusoidal distribution of ground displacement.

A recent attempt on the structural response of buried pipeline bends accounting for soil-

pipe interaction has been presented by Karamitros et al. (2016), proposing an analytical

formulation, based on beam theory (circular cross-section and absence of hoop stress/strain

effects) and using an equivalent linear elastic analysis of the bend to develop analytically

its stiffness matrix. Despite the fact that in Karamitros et al. (2016) inelastic effects were

taken into account indirectly, the main assumptions of this analysis may not reflect the real

behavior of buried pipeline bends under severe actions. Nevertheless, apart from the

aforementioned few works, the structural behavior of elbows in buried pipelines, consid-

ering their interaction with the surrounding soil in a rigorous manner, has received very

little attention in the literature.

The present study is part of a research project on pipeline safety against permanent

ground-induced actions, sponsored by the European Commission (Vazouras et al. 2015a).

In particular, the work presented in this paper focuses on the mechanical behavior of buried

steel elbows in fault-crossing areas and has a dual purpose: (a) to analyze the mechanical

response of those buried pipeline components subjected to severe imposed deformations,
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accounting for soil-pipe interaction, and (b) to investigate the effects of elbow flexibility on

the structural response of a pipeline crossing a tectonic fault. It is expected that, due to their

flexibility, the presence of elbows at a distance from the fault would affect the distribution

of stress and strain in the critical area. For the purposes of the present study, a 36-inch-

diameter pipe is considered, with thickness equal to 3/8 in, and bends of radius equal to 5

pipe diameters (R/D = 5), which refers to induction ‘‘hot’’ bends. The numerical models

employed in the present study are three-dimensional models, enhancing the models pro-

posed in previous publications of the authors Vazouras et al. (2010, 2012, 2015b). Sec-

tion 2 examines the response of a buried pipeline segment that contains a bend under axial

pull-out force, focusing on the effects of internal pressure, bend angle and the stiffness of

the surrounding soil. Subsequently, using the results of Sects. 2 and 3 focuses on the

analysis of the 36-inch-diameter pipeline crossing a strike-slip fault, with the purpose of

investigating the effects of the nearby elbows on pipeline structural performance. Finally,

some important conclusions are summarized in Sect. 4.

2 Mechanical response of buried pipe elbows

2.1 Description of the physical problem

The mechanical behavior of steel pipe elbows is examined, subjected to structural loading,

in the presence of internal pressure, employing advanced numerical models in finite ele-

ment program ABAQUS (2012). The nonlinear material behavior of the steel pipe and the

surrounding soil, as well as the interaction between the soil and the pipe, are modeled in a

rigorous manner including the effects of pipeline cross-section distortion and the signifi-

cant deformations of the surrounding soil. Using these advanced numerical tools, elbow

performance is assessed against possible failure modes, in a rigorous manner.

The physical problem under consideration is shown in Fig. 2, which depicts schemat-

ically the plan view of a buried pipeline segment AE that contains elbow BC of angle a.

The elbow has a constant radius R, and is connected to the straight parts of the pipeline AB

and CE at cross-sections B and C respectively. The pipeline segment under consideration is

subjected to a pull-out force F at the left end (point A) in the direction of pipeline axis. One

may consider that this force stems from a severe ground-induced action on the pipeline.

The displacement of point A in the direction of this pull-out force is denoted by u, whereas

the straight part CE is assumed to extend beyond point E, at infinity.

α
R

F

D

u

pipe bend

1L

2L

AB

C

E

bL

∞

Fig. 2 Schematic representation
of a buried pipeline segment
containing an elbow, subjected to
pull-out displacement at one end,
while extending to infinity at the
other end
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A 36-inch-diameter pipe (914 mm) is considered in the present study, with three values

of bend (deflection) angle a, equal to 90�, 60� and 30�. Pipeline thickness is equal to 3/8

inch (9.5 mm), corresponding to a diameter-to-thickness ratio equal to 96. The ratio of

radius-to-diameter of the elbow (R/D) is equal to 5 (‘‘hot’’ or induction pipe bend),

characterized by the presence of low residual stresses. The pipeline material is X65 steel,

with yield stress rY and ultimate stress ru equal to 450 MPa (65 ksi) and 560 MPa

respectively.

The pipe is embedded in clay (cohesive) soil, considering two different sets of soil

parameters. The first set corresponds to a ‘‘soft to firm’’ soil, referred to as Clay I, with

cohesion c = 50 kPa, friction angle u = 0�, Young’s modulus E = 25 MPa and Poisson’s

ratio v = 0.5, and the second set refers to a stiffer clay referred to as Clay II, with cohesion

c = 200 kPa, friction angle u = 0�, Young’s modulus E = 100 MPa and Poisson’s ratio

v = 0.5. The soils under consideration are assumed to respond under undrained conditions,

implying zero volumetric strains. Both pressurized and non-pressurized pipes are simu-

lated, with internal pressure equal to 3.78 MPa (37.8 bar), corresponding to 56% of the

maximum operating pressure pmax of the pipeline, given by the following expression,

considering a design factor equal to 0.72:

pmax ¼ 0:72 � 2ry
t

D

� �
ð1Þ

2.2 Numerical modeling

To simulate the structural behavior of the buried pipeline elbow, a finite element model is

developed where the pipeline segment under consideration is embedded in the soil. The

model has the features of the three-dimensional finite element models proposed in previous

publications of the authors Vazouras et al. (2010, 2012, 2015b), where numerous fault

crossing configurations of straight pipeline segments have been simulated in a rigorous

manner. Recently, the models in Vazouras et al. (2010, 2012, 2015b) have been suc-

cessfully compared with experimental data in Sarvanis et al. (2016).

Figure 3 shows the finite element model, employed for the analysis of pipe-soil inter-

action for the case of 90� elbow. The top surface of the prism represents the soil surface,

and the embedment depth is chosen equal to about two pipe diameters. Figure 3a shows the

complete finite element model at its undeformed configuration, whereas Fig. 3b shows a

horizontal section of the model at mid-height of the pipeline. The finite element mesh

employed for the steel pipeline is fine enough as depicted in Fig. 4, so that cross-sectional

∞ pull out 
direction

(a) (b)

Fig. 3 Finite element model of buried pipeline segment with an elbow of bend angle a equal to 90�;
a general view of the model and b horizontal section of the model at the level of pipeline axis
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distortion and the formation of short-wave wrinkles on the pipeline wall due to local

buckling are accurately simulated. Furthermore, the interface between the outer surface of

the steel pipe and the surrounding soil is simulated with a contact algorithm, which allows

separation between the pipe and the surrounding soil, accounting for interface friction

through a friction coefficient l equal to 0.30 (Vazouras et al. 2015b). Furthermore, Fig. 5

shows the finite element models for the 60� and 30� pipe elbows respectively. Shell

elements are used for the pipe and solid elements for the soil. More specifically, four-node

reduced-integration shell elements (S4R) are employed for modeling the steel pipeline

segment; these are finite-strain elements, accounting for finite membrane strains and

arbitrarily large rotations, suitable for large strain analysis, including local buckling.

Towards that purpose, the mesh is fine enough so that six elements are within one buckling

wave length. Furthermore, eight-node reduced-integration ‘‘brick’’ elements (C3D8R) are

used to simulate the surrounding soil. A large-strain J2 (von Mises) plasticity model with

isotropic hardening is used for the steel pipe material, whereas the mechanical behavior of

Steel 
pipeline 
finite 
element 
mesh

Fig. 4 Shell finite element mesh
for the steel pipeline

∞

pull out 
direction

∞

pull out 
direction

Fig. 5 Three-dimensional finite element models of buried pipeline elbows with a bend angle a equal to 60�
and 30�
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soil material is described through an elastic-perfectly plastic Mohr-Coulomb constitutive

model, characterized by the cohesion c, the friction angle u, the elastic modulus E, and

Poisson’s ratio v. The corresponding values of pipe material parameters and soil param-

eters for Clay I and Clay II conditions are stated in the previous paragraph.

In all numerical models developed herein, the end sections of the elbow (curved part),

denoted as B and C are located at a distance equal to 15 m from A and E respectively

(L1 = L2 = 15 m). This distance is about 17 diameters long, adequate for assuming uni-

axial conditions at the two ends A and E of the model, following a short parametric

analysis. The pull-out force F is applied at one end of the pipe segment (end section A). At

the other end of the pipe segment (section E), a non-linear spring is attached to account for

the ‘‘infinite length’’ continuation of the pipeline; the constitutive law of this spring follows

the force–displacement relationship developed in Vazouras et al. (2015b). More specifi-

cally, for the pipe and the soil conditions under consideration, the force–displacement

diagram is shown in Fig. 6.

The analysis of the pipe segment is performed in two steps: first, gravity loading and

internal pressure are applied and subsequently, pull-out displacement of pipe is imposed

gradually at end section A, using an incremental displacement-controlled scheme. At each

increment the response of the elbow element is monitored, accounting for the interaction

with the surrounding soil and the presence of internal pressure.

2.3 Performance criteria of steel pipe bends

To quantify the amount of damage in a buried pipeline under severe ground-induced

actions, appropriate performance criteria, often referred to as ‘‘limit states’’, should be

defined. One should note that pipeline design has been based traditionally on the ‘‘al-

lowable stress’’ concept, for normal operating conditions; in that design procedure, hoop

stress is the primary design parameter, which is limited by the allowable stress of the

pipeline material, specified as a percent of yield stress. However, in the case of extreme

ground-induced deformations, the pipeline exhibits significant inelastic deformation,

associated with stresses and strains well beyond first yield of pipeline material, and

therefore, pipeline performance should be evaluated in terms of limit states based on

longitudinal strain, rather than stress. The relevant limit states are (a) tensile failure,

(b) local buckling and (c) cross-sectional ovalization of the pipe. These limit states are

described by Vazouras et al. (2010, 2012, 2015b), and are briefly discussed below, in terms

of their corresponding deformation (strain) limit values.

0

5

10

15

20

25

30

35

0 0.5 1 1.5 2

Fo
rc

e,
 M

N

displacement, m

Fig. 6 Force–displacement
relationship of nonlinear spring
simulating an infinitely-long
straight pipeline subjected to
axial tension for the cohesive soil
conditions under consideration
(Vazouras et al. 2015b)
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2.3.1 Tensile strain limit

Tensile strain capacity is associated with pipe wall fracture, and is controlled mainly by the

strength of pipeline girth field welds, which constitute the weakest locations due to weld

defects and stress/strain raisers. Suggested values of the ultimate tensile strain eTu for butt-

welded water pipelines, in existing specifications and recommendations, ranges between 2

and 5%. In CSA Z662 standard (2007), an analytical equation is proposed for determining

the value of eTu in pipeline girth welds considering surface defects, and provides results

within the above range. PRCI recommendations (2004) for the case of hydrocarbon

pipelines, suggest a limit within 2–4% for pressure integrity and a limit within 1–2% for

normal operability. It is the authors’ opinion that, in the lack of relevant experimental

evidence, a value of 3% for eTu is a reasonable choice and will be used throughout the

present study.

2.3.2 Compressive strain limit

Compressive strains may also occur in buried pipelines due to ground-induced action and

cause local buckling (wrinkling) of the pipeline. In the presence of those ‘‘wrinkles’’ or

‘‘buckles’’, the pipeline may still fulfill its basic operation function (i.e. hydrocarbon

transmission), provided that the steel material is adequately ductile. However, significant

strain concentrations exist in the buckled area and, because of fluctuating operation loads,

fatigue cracks may develop, imposing serious threat for pipeline integrity (Dama et al.

2007; Pournara et al. 2015). Compressive strain limits for steel pipes depend on the

diameter-to-thickness ratio D/t, the level of internal pressure, the steel grade, as well as on

the presence of initial imperfections and residual stresses from line pipe fabrication process

(Gresnigt et al. 1986; Gresnigt and Karamanos 2009). Empirical analytical expressions for

the ultimate compressive strain eCu have been proposed in several standards and recom-

mendations (Canadian Standard Association 2007; Comité Européen de Normalisation

2006; Nederlands Normalisatie-Instituut 2006; Det Norske Veritas 2013). In the present

paper, pipeline buckling is modelled rigorously, through the finite element model.

2.3.3 Cross-sectional ovalization limit

To maintain the pipeline operational, significant cross-sectional distortions should be

avoided. This is more likely to occur in low-pressure conditions, whereas pressurized

pipelines exhibit less cross-sectional distortion due to the stabilizing effect of internal

pressure. Cross-sectional distortion is a serviceability limit state, not related directly to

pipeline failure and loss of containment, and can be expressed through the so-called

‘‘flattening parameter’’ f, defined in terms of the ratio of the maximum change of pipe

diameter DD over the original pipe diameter D:

f ¼ DD=D ð2Þ

Following the suggestion by Gresnigt et al. (1986) and NEN 3650 (2006), a cross-

sectional flattening limit state is reached when the value of f becomes equal to 0.15.
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2.4 Numerical results for buried pipeline bends

Numerical results for the problem shown in Fig. 2 are obtained for the 36-inch-diameter

pipeline segment under consideration and for the elbow cases shown in Table 1. Figure 7

shows the deformed shape of the soil block and the corresponding soil strains induced by

pipeline-soil interaction for the case of pressurized 30� and 60� elbows in Clay I soil

conditions (cases 2 and 3). It should be noted that the present results not only provide the

force–displacement relationship, but also focus on the development of excessive local

strains in the elbow with respect to the limit states. The load–displacement curves of the

elbows are used in the subsequent section of the present paper, to define the constitutive

law of equivalent non-linear springs, simulating the presence of elbows in a large-scale

finite element pipeline model for fault crossing.

2.4.1 Elbow performance in terms of limit states

Previous calculations in buried pipelines of straight configuration, subjected to fault action,

have shown that the presence of internal pressure reduces cross-sectional ovalization by a

substantial amount (Karamanos et al. 2006, 2016). This has also been observed in the

present analysis of buried elbows, as shown in Fig. 8 for the pressurized cases 1, 2 and 3 of

Table 1. The maximum value of the flattening parameter is 5.5%, measured at a pull-out

displacement of 1 m for the case of the 90� elbows (case 1), considerably less than the

allowable value of 15%. On the other hand, significantly higher values of the flattening

parameter are obtained for the non-pressurized cases. Figures 9 and 10 show the flattening

parameter along a non-pressurized 90� elbow embedded in Clay I soil conditions (Case 4)

for two values of imposed displacements, equal to 64 cm and 1 m. In the calculation of

ovalization parameter f, the change of diameter DD is measured with respect to horizontal

and vertical pipe diameter in Figs. 9 and 10 respectively. The elbow reaches the oval-

ization limit state at a pull-out displacement equal to 64 cm, whereas the onset of local

buckling for this non-pressurized elbow occurs at a slightly earlier pull-out displacement,

equal to 60 cm, indicating that local buckling is the governing limit state for this specific

case. Furthermore, local buckling occurs at a distance of 4 m from the end of the elbow

(Fig. 11). In the pressurized 90� elbow (case 1), local buckling is also the critical limit

state. The buckle occurs at the outer part of the bend (Fig. 12), and the corresponding pull

Table 1 Cases considered in the numerical analysis of buried pipeline elbows

Case Elbow angle a Limit state Critical displacement (first
limit state occurs) [m]

1 Clay I

p = 56% pmax

90 Local buckling 0.76

2 60 3% Tensile strain 0.48

3 30 3% Tensile strain 0.23

4 Clay I
p = 0

90 Local buckling 0.60

5 60 Ovalization 0.42

6 30 3% Tensile strain 0.20

7 Clay II
p = 56% pmax

90 3% Tensile strain 0.44

8 60 3% Tensile strain 0.26

9 30 3% Tensile strain 0.23
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out displacement is 76 cm. This value, compared with the 60 cm of pull-out displacement

required for the unpressurized elbow to buckle, shows the beneficial effect of internal

pressure. In this pressurized case, after the occurrence of local buckle, severe tensile strains

develop at the inner side of the elbow, opposite of local buckle location, and the maximum

tensile strain value reaches the critical tensile strain value of 3% (tensile strain limit) at a

pull-out displacement equal to 88 cm, as shown in Fig. 13.

Similar behavior in terms of failure mechanisms is observed for the 60� elbow, pres-

surized at 56% of yield pressure (case 2). In this case, the tensile strain limit value (3%) is

reached at an imposed pull-out displacement equal to 48 cm, as shown in Fig. 14, whereas,

if the pipe survives the tensile strain limit of 3%, local buckling is formed at the bend

extrados at a slightly later stage, corresponding to an imposed displacement equal to

Fig. 7 Pipeline-soil interaction and equivalent plastic strain distribution in soil for pressurized elbows in
Clay I conditions; a 30� elbow (case 3) and b 60� elbow (case 2)
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displacement of 1 m; the change of diameter DD is measured with respect to the horizontal pipe diameter
(DD ¼ DH � D)
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55 cm. On the other hand, the non-pressurized 60� elbow (case 5) reaches the ovalization

limit state at a pull out displacement equal to 42 cm. Figures 15 and 16 show the variation

of flattening parameter along the pipe elbow for two values of pull-out displacement, equal

to 42 cm and 1 m, for the non-pressurized case 5. Increasing the pull-out displacement for

this unpressurized elbow, local buckling occurs at a value of pull-out displacement equal to

60 cm, located at a distance of 5.7 m from the elbow end, as shown in Fig. 17.
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Fig. 11 Local buckle formation for a non-pressurized 90� elbow embedded in Clay I (case 4)

pull out 
direction

onset of 
local 

buckling local 
buckle

Fig. 12 Local buckle formation for pressurized 90� elbow embedded in Clay I (case 1); onset of buckling
occurs at 76 cm (left), and buckle develops with increasing pull-out displacement (right)
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Fig. 13 Tensile strain capacity
reached at the center of the
pressurized 90� elbow embedded
in Clay I soil conditions at 88 cm
of pull-out displacement (case 1)
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The 30� elbow under both pressurized and non-pressurized conditions exhibits failure

due to excessive tensile strain; in those cases, local buckling and ovalization limit states

may not be critical. The 3% value of tensile strain limit is reached at 22 cm and 20 cm of

pull-out displacement respectively, which are rather low values compared with the

maximum 
tensile 
longitudinal 
strain

pull out 
direction

Fig. 14 Tensile strain limit (3%)
is reached at the center of
pressurized 60� elbow, embedded
in Clay I conditions, at a pull-out
displacement equal to 48 cm
(case 2)

-0.30

-0.20

-0.10

0.00

0.10

0.20

0.30

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36

A B

D

VD

HD

H

undeformed
deformed

α

,F u

D

s

1L

2L

A B

C

E

bL

0s =

ovalization limit

ovalization limit

1 15L m=
1u m=60-deg 

elbow

42u cm=

C

2 15L m=

bL

distance s along pipe segment, m

fla
tte

ni
ng

 p
ar

am
et

er
, f

Fig. 15 Flattening parameter f along the non-pressurized 60� elbow (case 5) for two values of pull-out
displacements equal to 42 cm and 1 m; diameter change DD is measured with respect to horizontal pipe
diameter DD ¼ DH � Dð Þ
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Fig. 17 Buckle formation for the non-pressurized 60� elbow embedded in Clay I (case 5); local buckling
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5)
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corresponding values of the other elbows. Figure 18 shows the failure mode due to

excessive tensile strain at the unpressurized 30� elbow of case 6. The last two columns of

Table 1 summarize the applied pull-out displacement, at which the first limit state is

reached for all cases under consideration.

For the pressurized elbows embedded in stiffer soil conditions (Clay II) the tensile strain

limit state of 3% is critical for all bends. Stiffer soil conditions offer more resistance to the

lateral movement of the pipe, resulting in higher strains within the pipe wall than those

developed in Clay I embedment. The values of pull-out displacement, which correspond to

the first occurrence of a limit state for Clay II soil conditions, are also presented in Table 1.

2.4.2 Effect of bend angle on elbow response

Figure 19 shows the effect of bend angle a on the structural response of pressurized

elbows, embedded in Clay I soil conditions (cases 1, 2, and 3). The value of axial force F is

normalized by the nominal yield force of the pipe cross-section FP ¼ rYpDtð Þ, whereas the

corresponding axial displacement u is normalized by the pipe diameter. The results indi-

cate an increase of bend flexibility as the bend angle a increases, which is in accordance

with similar observations from ‘‘on-air’’ (not embedded) elbow tests and numerical results

(Karamanos 2016). In the same figure, the results for the three elbows are compared with

the corresponding results from a straight pipe (bend angle equal to zero). It is noted that the

maximum axial force sustained by the 90� elbow is approximately 40% of the maximum

axial force of a straight pipe with the same geometric and material cross-sectional prop-

erties. For values of bend angle a equal to 90� or 60�, the diagram becomes nearly flat at

relatively low values of applied displacement whereas for the elbow with bend angle equal

to 30� the axial force is an increasing function of imposed displacement.

The variation of pull-out normalized force in terms of the corresponding normalized

displacement is depicted in Fig. 20 for the three bend angles under consideration,

pull out 
direction

Fig. 18 Development of significant tensile strains at the central area of the non-pressurized 30� elbow
embedded in Clay I at a pull-out displacement of 20 cm (case 6)
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embedded in stiffer soil conditions (Clay II) in the presence of internal pressure (cases 7, 8

and 9). The axial force required for reaching a specific pull-out displacement of the pipe is

larger compared with the forces in the cases shown in Fig. 19, which implies that, in the

presence of stiffer soil conditions, the mechanical response of pipe elbows become stiffer.

The results also indicate that the axial force sustained by the elbow decreases as elbow

angle a increases, but this reduction is less pronounced compared with the corresponding

reduction observed in Clay I soil conditions (Fig. 19). This implies that the presence of

stiff soil conditions may alleviate the effect of elbow flexibility, especially for small values

of bend angle a. One should notice that the above curves correspond to an overall structural

behavior of the elbows. In those graphs, the arrows (: or ;) on the curves specify the stage

at which the first limit state is reached for each case, as reported in Table 1, and indicate

the maximum displacement that those curves should be considered.

Finally, Fig. 21 plots the normalized force–displacement diagrams for the three elbows

embedded in Clay I soil, in the absence of pressure (cases 4, 5 and 6). The values of axial

pull-out force required to reach a specific displacement are smaller than the corresponding

axial force values calculated for the pressurized elbows in the same soil conditions,

demonstrating the stiffening effects of internal pressure.
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2.5 Remark

The results in the present section have verified and quantified the unique structural

behavior of buried pipeline elbows, in terms of their flexibility and local strain intensity. In

the case of pipeline fault crossing, because of the development of significant local strains in

the elbow, the use of pipeline elbows within the fault zone may not be recommended. On

the other hand, the presence of pipeline elbows at a certain distance from the fault zone,

may affect the state of deformation within the pipeline because of their flexibility, possibly

reducing the ground-induced strains due to fault movement. This feature of pipeline elbow

behavior in fault crossing areas is analyzed and discussed in more detail in the next section

for a 36-inch-diameter pipeline crossing a strike-slip fault.

3 Effect of elbows on pipeline response in fault crossings

The second part of the present work investigates the influence of elbows on the mechanical

behavior of pipelines crossing active seismic faults. The present hypothesis is that pipeline

bends, placed at a certain distance from the fault, may alleviate the effects of fault action

and reduce the tensile strains developed in the pipeline wall, because of their flexibility. A

similar concept has been reported by Bartolini et al. (2013) in a horizontal fault crossing of

the Sakhalin gas pipeline. In the following, a thorough investigation of this concept is

offered, using the advanced finite element tools, presented in the previous publications of

the authors Vazouras et al. (2015b), and the results from the first part of the present paper.

A 36-inch-diameter pipeline is considered, crossing a strike-slip (horizontal) fault at 25�
(b = 25�), which results in severe tension of the pipeline due to axial stretching. The

pipeline configuration at the fault crossing area is shown in Fig. 22, and it is symmetric

with respect the fault plane. The 36-inch-diameter pipeline has the material and geometric

properties described in the previous section; thickness is 3/8 inch and the steel grade is

X65. The pipeline is pressurized at a level of 56% of pmax, and is embedded in Clay I soil

conditions. The elbows are located at a certain distance from the fault plane, as shown in

the plan view of the crossing configuration (Fig. 22), and the distance Le of each elbow

from the fault plane ranges from 45 m to 345 m. The model and the results reported in the

present section refer to the strike-slip fault under consideration, which is a symmetric
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Fig. 21 Variation of axial (pull-
out) normalized force in terms of
‘‘pull-out’’ normalized
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angles of non-pressurized pipes
embedded in Clay I; cases 4, 5, 6
and comparison with the straight
pipe case (a = 0o). Failure mode
is stated in Table 1, and is
denoted by arrow (: or ;)
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configuration. Nevertheless, the same concept can be applied for the case of normal faults,

using a similar procedure through an appropriate numerical model.

3.1 Finite element modeling

The finite element model of the fault crossing configuration of the 36-inch-diameter

pipeline is presented in Fig. 23. The central part of the model is 60-m-long (30-m-long on

each side of the fault), and consists of a soil block, modelled with solid elements, where the

pipe is embedded, similar to the model described in Vazouras et al. (2015b) for strike-slip

fault crossing of straight pipelines. Four-node reduced-integration shell elements are

employed for simulating the steel pipeline in this solid block. The constitutive model for

the soil elements follows Mohr-Coulomb constitutive model, characterized by the cohesion

c, the friction angle u, the elastic modulus E, and Poisson’s ratio v, as in the previous

section, whereas a J2 metal plasticity model with isotropic hardening is employed for

describing pipe steel material. The fault movement is considered to occur within a narrow

zone of width w equal to 0.33 m, also used in the previous works of the authors Vazouras

et al. (2010, 2012, 2015b).

The above three-dimensional model is appropriately enhanced to account for the

presence of the elbows. The enhancement consists of adding special-purpose pipe elements

for simulating the straight part of the pipeline outside this solid block on either side of the

block, at a length equal to LP along with soil springs in the axial pipeline direction, to

account for friction between the pipe and the surrounding soil. The load–displacement law

of the soil springs is bilinear, calculated as described in detail in Vazouras et al. (2015b);

the initial stiffness of the spring is 18,217 kN/m2, up to a maximum load at 43.72 kN/m,

corresponding to a displacement of 2.4 mm, whereas the load remains constant for dis-

placements larger than 2.4 mm. Furthermore, nonlinear springs are assumed at the end of

those straight parts, which account for the presence of the elbows, as shown in Fig. 23b.
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Fig. 22 Schematic representation of strike-slip fault crossing configuration (plan view)

cFig. 23 Three-dimensional finite element model for simulating strike-slip fault crossing using a
combination of elements and springs for simulating the steel pipeline, the surrounding ground and the
elbows
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The load–displacement law of the nonlinear springs is taken from the numerical results of

the previous section, as shown in Fig. 19.

The elbows are located at a distance Le from the fault plane, which ranges between 45

and 345 m, and are also compared with the results obtained from a straight pipeline

configuration (without bends). Note that, referring to Figs. 2, 22 and 23, one readily

obtains that Le ¼ LS=2ð Þ þ LP þ L1. Therefore, given the fact that LS = 60 m and

L1 = 15 m, the values of LP, used in the numerical model, range from zero to 300 m. The

bend angle a of the pipe elbows under consideration are equal to 30�, 60� and 90�. The

analysis is performed using a displacement-controlled scheme.

3.2 Numerical results

The first case examined refers to elbows located relatively close to the fault (Le = 45 m,

which means LP = 0). The main feature of this pipeline configuration is the introduction of

significant flexibility due to the bends at the two ends of a relatively short pipeline seg-

ment, which is severely stretched because of fault action. This flexibility affects pipeline

stretching, reducing substantially the level of tensile strain. The numerical results indicate

that the presence of a 90� or a 60� pipe bend at a distance Le equal to 45 m from the fault,

causes pipeline local buckling at relative small values of fault displacement, namely 55 and

85 cm respectively. Figure 24 shows the consecutive stages of local buckle formation for

the case of a 90� elbow and the location of the local buckle in the pipeline.

The structural behavior is different when a 30� elbow is used at the same distance from

the fault (Le = 45 m). In that case, the pipe elbow itself exhibits significant strains, and

becomes the critical component of the pipeline; significant tensile strains develop rapidly at

the elbow, reaching the 3% tensile strain limit at a value of fault displacement equal to

130 cm, which is lower than the corresponding fault displacement for a straight pipeline

configuration.

At this point, it should be noticed that the value of 3% for the tensile limit strain of the

pipe elbow might be rather conservative. This strain limit value, as noted in Sect. 2.3.1, has

been dictated by the deformation capacity of pipeline girth (field) welds. In the case of a

pipe elbow, the maximum strain usually occurs at the curved part of the pipe, away from

the girth welds, where a higher tensile strain capacity may be allowed. If the numerical

calculation is repeated with an axial tensile limit strain up to 5% is used, the corresponding

fault displacement is calculated equal to 200 cm, a significantly higher value. Nevertheless,

in the lack of a dedicated study on this matter, and considering the fact that the location of

maximum tensile strain may not be known a priori, the 3% value for the tensile limit strain

is recommended and used in all cases examined in the present paper. Furthermore, this

rather conservative value of tensile strain limit may account partially for possible uncer-

tainty of the fault location.

The results for the bend angles under consideration when used at a distance Le equal to

45 m from the fault are summarized in Fig. 25. Each case is associated with a specific limit

state: local buckling (denoted as ‘‘LB’’) for the 90� and the 60� elbows, tensile failure at the

bend area (denoted as ‘‘TL-E’’) for the 30� elbow or tensile failure near the fault (denoted

as ‘‘TL’’) for the straight pipeline. The results show that the presence of elbows quite close

to the fault area, may not be beneficial, reducing the deformation capacity of the pipeline

against fault movement action.

Increasing the value of distance Le of the elbows from the fault zone, the pipeline

behaviour is significantly modified. To examine this effect, the numerical model is

enhanced with pipe elements, having the geometric and material characteristics of the
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pipeline under consideration, connected to the shell elements, extending the pipeline to the

desired length, whereas nonlinear springs are distributed in the axial direction along the

pipe elements, as described in the previous section.

The length of pipe elements LP added at both sides of the pipeline outside the soil block

is chosen equal to 50, 100, 150, 200 and 300 m. At both ends of the two pipeline segments,

nonlinear springs are attached, using the force–displacement relationships of the elbows

shown in Fig. 19. Figure 26 plots the fault displacement corresponding to the critical limit

state of the pipeline (referred to as ‘‘critical fault displacement’’), when the elbows are

located at a distance of 95 m and 145 m from the fault, whereas Fig. 27 plots the critical

fault displacement when elbows are placed at 195, 245 and 345 m. For the majority of the

cases depicted in those Figures, the critical fault displacement is associated with the 3%

tensile strain limit state at the straight pipe segment, at the vicinity of the fault area. Only

for the cases of 30� and 60� elbows located at a distance 95 m from the fault (Fig. 26)

failure occurs at the pipe elbow, far from the fault crossing zone, denoted as ‘‘TL-E’’ in

(a)

(b)

Fig. 24 a Consecutive stages of local buckle formation for 90� pressurized bend (plan view), for three
values of fault displacement: 0.55, 0.60 and 1 m; b location of local buckle in the pipeline (b = 25�, Clay I,
p ¼ 0:56 pmax, Le = 45 m)
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Fig. 26. All numerical results are summarized in Fig. 28, which shows the critical fault

displacement for each elbow in terms of its distance from fault. The results also show that,

beyond a certain distance Le equal to about 250 m, the pipeline under consideration may
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Fig. 25 Fault displacement corresponding to first limit state of the pipeline for different values of the bend
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not be affected by the presence of elbows, and the pipeline response is similar to the one of

the straight pipeline.

The above results demonstrate that the use of elbows at an appropriate distance from the

fault zone, introduces flexibility on the stretched pipeline, alleviating the effect of tensile

stretching and increasing the deformation capacity of the pipeline. The results further

indicate that there exists an optimum distance Le from fault plane that corresponds to a

maximum allowable fault displacement. This distance depends on the geometric charac-

teristics of the pipe, the elbow angle and the soil conditions. For the pipeline crossing under

consideration, this optimum distance is equal to about 150 m and appears to be inde-

pendent of the value of bend angle a. On the other hand, the presence of elbows too close

to the fault zone may introduce an opposite effect causing either local buckling or elbow

tensile strain failure, reducing pipeline capacity against fault displacement, as shown in

Fig. 25.

A final note on this paragraph refers to the uncertainty associated with the location of

the fault in a fault crossing configuration. This uncertainty always exists, but can be

significantly reduced if trenching techniques are applied (McCalpin 1996). Furthermore,

the adoption of a conservative tensile strain limit may redeem for this uncertainty. In any

case, given a specific pipeline fault-crossing configuration, variation of fault location

implies modification of the distance between each elbow and the fault plane, and this may

influence pipeline response. To quantify the effects of different fault locations on pipeline

behavior, the fault-crossing problem under consideration is revisited, for the case of Le
equal to 195 m and 60� elbows, considering an offset e with respect to the original fault

location, as shown in Fig. 29. The numerical model is enhanced with appropriate adjust-

ment of pipe element length on either side of the fault, and a short parametric analysis is

performed, with a maximum offset value e equal to ±30 m; this corresponds to a zone of

60 m, also referred to as ‘‘fault accuracy width’’ (Bartolini et al. 2013). The results of this

parametric analysis are shown in Table 2, and indicate that, for the particular case under

consideration, the variation of fault location within this 60-m-wide zone has a negligible

effect on the critical (failure) fault displacement. A similar analysis should be performed

for any other specific case of pipeline fault-crossing to quantify the influence of fault

location variation.
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4 Conclusions

The present paper has examined the mechanical behavior of buried steel pipeline bends

(elbows) using rigorous numerical simulation tools. Three values of bend angle, equal to

90�, 60� and 30�, have been taken into account for a 36-inch-diameter pipeline in cohesive

soil conditions. In the first part of the paper, the elbows are embedded in two different

cohesive soil conditions (soft-to-firm and stiff clay). The results indicate that elbows with

larger bend angle are more flexible. For stiffer soils, this elbow flexibility is less pro-

nounced, indicating that the surrounding soil plays an important role in the mechanical

behavior of the bend. In the case of non-pressurized pipes elbow flexibility becomes larger.

For most of the cases examined, the critical limit state of the elbow has been the tensile

strain limit.

In the second part of the paper, the possibility of using elbows as ‘‘mitigating devices’’

is investigated, in pipelines crossing active faults. A 36-inch-diameter pipeline configu-

ration is considered, crossing a strike-slip fault, with elbows on either side of the fault at a

certain distance. The results for the pipeline, the soil conditions and the fault configuration

under consideration indicate that there exists an optimum distance of the elbows from the

fault, at which the pipeline can withstand a maximum value of fault displacement. This

maximum value is significantly higher than the one corresponding to a straight pipeline

crossing configuration. Uncertainties on the fault location may influence the results and, in

the absence of fault trenching, this effect can be taken into account using a dedicated

sensitivity analysis. Adoption of a conservative tensile limit strain may also redeem for this

uncertainty.
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Fig. 29 Fault location offset in the strike-slip fault crossing configuration (plan view), in comparison with
the crossing configuration of Fig. 22

Table 2 Dependence of critical fault displacement on different locations of the fault plane (Clay I, 60�
elbows, Le = 195 m)

Offset value e 0 ±10 ±20 ±30

Critical fault displacement (cm) 246 247 251 251
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On the other hand, the use of elbows quite near the fault zone, may introduce excessive

flexibility in the pipeline, reducing tensile strains by a significant amount and resulting in

local buckling of the pipeline or failure at the elbow itself under excessive tensile strain, at

relatively small values of fault displacement.

It is the authors’ conclusion that that the use of elbows at a distance from the fault can

be considered as a thought-provoking yet promising idea for mitigating fault-crossing

effects on buried pipelines. Furthermore, it should be underlined that for a specific case, a

dedicated analysis is necessary to quantify those effects towards efficient pipeline design.

This analysis should account for pipe and soil properties, and fault characteristics,

including the uncertainty regarding fault location.
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