1,613 research outputs found

    Diagnostic Challenge in a Sickle Cell Disease Patient with COVID-19

    Get PDF
    Acute chest syndrome is a life-threatening complication in sickle cell disease. Infections are frequently implied, and like other viruses, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) may be a trigger. In addition, due to their inflammatory status, they may present a higher risk for severe coronavirus disease 2019 (COVID-19). Pneumonia and acute chest syndrome share clinical, laboratory, and radiological features and may overlap, which makes their differential diagnosis especially challenging. We describe a case of an adolescent with homozygous sickle cell disease that developed acute chest syndrome in the context of COVID-19. With it, we intend to bring awareness to the potential role of imaging in the differential diagnosis and in establishing the best approach for the patient. Chest computed tomography findings were suggestive of an alternative diagnosis to COVID-19 pneumonia and red cell transfusion, fluid management, analgesics, and antibiotics were administered with favorable outcome.info:eu-repo/semantics/publishedVersio

    A salting out and resin procedure for extracting Schistosoma mansoni DNA from human urine samples

    Get PDF
    Submitted by Nuzia Santos ([email protected]) on 2012-09-27T14:31:36Z No. of bitstreams: 1 36.2010.pdf: 789056 bytes, checksum: 0a4282ac34d4c6aef08223da45e0f126 (MD5)Made available in DSpace on 2012-09-27T14:31:36Z (GMT). No. of bitstreams: 1 36.2010.pdf: 789056 bytes, checksum: 0a4282ac34d4c6aef08223da45e0f126 (MD5) Previous issue date: 2010Fundação Oswaldo Cruz. Laboratório de Esquistossomose. Belo Horizonte, MG, BrasilFundação Oswaldo Cruz. Laboratório de Imunologia Celular e Molecular. Belo Horizonte, MG, BrasilFundação Oswaldo Cruz. Laboratório de Imunologia Celular e Molecular. Belo Horizonte, MG, Brasil/ Universidade Federal de Ouro Preto. Escola de Farmácia. Laboratório de Pesquisas Clínicas. Ouro Preto, MG, BraziBackground: In this paper a simple and cheap salting out and resin (InstaGene matrix® resin - BioRad) DNA extraction method from urine for PCR assays is introduced. The DNA of the fluke Schistosoma mansoni was chosen as the target since schistosomiasis lacks a suitable diagnostic tool which is sensitive enough to detect low worm burden. It is well known that the PCR technique provides high sensitivity and specificity in detecting parasite DNA. Therefore it is of paramount importance to take advantage of its excellent performance by providing a simple to handle and reliable DNA extraction procedure, which permits the diagnosis of the disease in easily obtainable urine samples. Findings: The description of the extraction procedure is given. This extraction procedure was tested for reproducibility and efficiency in artificially contaminated human urine samples. The reproducibility reached 100%, showing positive results in 5 assay repetitions of 5 tested samples each containing 20 ng DNA/5 ml. The efficiency of the extraction procedure was also evaluated in a serial dilution of the original 20 ng DNA/5 ml sample. Detectable DNA was extracted when it was at a concentration of 1.28 pg DNA/mL, revealing the high efficiency of this procedure. Conclusions: This methodology represents a promising tool for schistosomiasis diagnosis utilizing a bio-molecular technique in urine samples which is now ready to be tested under field conditions and may be applicable to the diagnosis of other parasitic disease

    Common evaluations of disease activity in rheumatoid arthritis reach discordant classifications across different populations

    Get PDF
    Objectives: The classification of disease activity states in rheumatoid arthritis (RA) can be achieved through disease activity indices, such as the Disease Activity Score in 28 joints erythrocyte sedimentation rate (DAS28-ESR), the Simplified Disease Activity Index (SDAI), and the Clinical Disease Activity Index (CDAI). Subjective measurements, such as patient reported outcomes have been incorporated into several of these indices alongside more objective assessments, such as increases in the ESR and C-reactive protein. Moreover, while they use similar criteria, different indices weight these criteria to different extents. Therefore, the classifications based on each evaluation may not always be the same. We aim to compare the performance of the three indices and their individual components in two different populations. Methods: Data from Dutch and Portuguese adherent centers were extracted from the METEOR database, a multinational collaboration on RA. We included a total of 24,605 visits from Dutch centers (from 5,870 patients) and 20,120 visits from Portuguese centers (from 3,185 patients). We compared the disease activity states as evaluated by the DAS28-ESR, CDAI, and SDAI across the two populations. In addition, we analyzed the individual components of each evaluation, including their respective contributions to the outcome, in each population. Results: We found significant differences in the disease activity states classified with the DAS28-ESR between the two populations. SDAI and CDAI had more congruous results. While the proportion of visits to Dutch and Portuguese centers that were classified as "in remission" was very similar between the CDAI and SDAI, the DAS28-ESR gave discordant results. Dutch patients had lower ESRs, which is more heavily weighted in the DAS28-ESR. In addition, even though the mean physicians' global assessment values did not vary significantly for Dutch vs Portuguese physicians, we found that doctors at Portuguese centers overall scored the physician's global assessment lower than Dutch physicians for patient visits classified by disease activity state. Conclusion: While the CDAI and SDAI assigned disease activity states that were largely similar, the DAS28-ESR was often discordant across the two populations. Moreover, we found that physicians, more than patients, evaluated disease activity differently among the Portuguese and Dutch populations. © 2018 Canhão, Rodrigues, Gregório, Dias, Melo Gomes, Santos, Faustino, Costa, Allaart, Gvozdenovic, van der Heijde, Machado, Branco, Fonseca and Silva

    Transcription of toll-like receptors 2, 3, 4 and 9, FoxP3 and Th17 cytokines in a susceptible experimental model of canine Leishmania infantum infection

    Get PDF
    Canine leishmaniosis (CanL) due to Leishmania infantum is a chronic zoonotic systemic disease resulting from complex interactions between protozoa and the canine immune system. Toll-like receptors (TLRs) are essential components of the innate immune system and facilitate the early detection of many infections. However, the role of TLRs in CanL remains unknown and information describing TLR transcription during infection is extremely scarce. The aim of this research project was to investigate the impact of L. infantum infection on canine TLR transcription using a susceptible model. The objectives of this study were to evaluate transcription of TLRs 2, 3, 4 and 9 by means of quantitative reverse transcription polymerase chain reaction (qRT-PCR) in skin, spleen, lymph node and liver in the presence or absence of experimental L. infantum infection in Beagle dogs. These findings were compared with clinical and serological data, parasite densities in infected tissues and transcription of IL-17, IL-22 and FoxP3 in different tissues in non-infected dogs (n = 10), and at six months (n = 24) and 15 months (n = 7) post infection. Results revealed significant down regulation of transcription with disease progression in lymph node samples for TLR3, TLR4, TLR9, IL-17, IL-22 and FoxP3. In spleen samples, significant down regulation of transcription was seen in TLR4 and IL-22 when both infected groups were compared with controls. In liver samples, down regulation of transcription was evident with disease progression for IL-22. In the skin, upregulation was seen only for TLR9 and FoxP3 in the early stages of infection. Subtle changes or down regulation in TLR transcription, Th17 cytokines and FoxP3 are indicative of the silent establishment of infection that Leishmania is renowned for. These observations provide new insights about TLR transcription, Th17 cytokines and Foxp3 in the liver, spleen, lymph node and skin in CanL and highlight possible markers of disease susceptibility in this model

    Cellular Immunity Confers Transient Protection in Experimental Buruli Ulcer following BCG or Mycolactone-Negative Mycobacterium ulcerans Vaccination

    Get PDF
    BACKGROUND: Buruli ulcer (BU) is an emerging infectious disease caused by Mycobacterium ulcerans that can result in extensive necrotizing cutaneous lesions due to the cytotoxic exotoxin mycolactone. There is no specific vaccine against BU but reports show some degree of cross-reactive protection conferred by M. bovis BCG immunization. Alternatively, an M. ulcerans-specific immunization could be a better preventive strategy. METHODOLOGY/PRINCIPAL FINDINGS: In this study, we used the mouse model to characterize the histological and cytokine profiles triggered by vaccination with either BCG or mycolactone-negative M. ulcerans, followed by footpad infection with virulent M. ulcerans. We observed that BCG vaccination significantly delayed the onset of M. ulcerans growth and footpad swelling through the induction of an earlier and sustained IFN-gamma T cell response in the draining lymph node (DLN). BCG vaccination also resulted in cell-mediated immunity (CMI) in M. ulcerans-infected footpads, given the predominance of a chronic mononuclear infiltrate positive for iNOS, as well as increased and sustained levels of IFN-gamma and TNF. No significant IL-4, IL-17 or IL-10 responses were detected in the footpad or the DLN, in either infected or vaccinated mice. Despite this protective Th1 response, BCG vaccination did not avoid the later progression of M. ulcerans infection, regardless of challenge dose. Immunization with mycolactone-deficient M. ulcerans also significantly delayed the progression of footpad infection, swelling and ulceration, but ultimately M. ulcerans pathogenic mechanisms prevailed. CONCLUSIONS/SIGNIFICANCE: The delay in the emergence of pathology observed in vaccinated mice emphasizes the relevance of protective Th1 recall responses against M. ulcerans. In future studies it will be important to determine how the transient CMI induced by vaccination is compromised

    Energy Metabolism in H460 Lung Cancer Cells: Effects of Histone Deacetylase Inhibitors

    Get PDF
    BACKGROUND: Tumor cells are characterized by accelerated growth usually accompanied by up-regulated pathways that ultimately increase the rate of ATP production. These cells can suffer metabolic reprogramming, resulting in distinct bioenergetic phenotypes, generally enhancing glycolysis channeled to lactate production. In the present work we showed metabolic reprogramming by means of inhibitors of histone deacetylase (HDACis), sodium butyrate and trichostatin. This treatment was able to shift energy metabolism by activating mitochondrial systems such as the respiratory chain and oxidative phosphorylation that were largely repressed in the untreated controls. METHODOLOGY/PRINCIPAL FINDINGS: Various cellular and biochemical parameters were evaluated in lung cancer H460 cells treated with the histone deacetylase inhibitors (HDACis), sodium butyrate (NaB) and trichostatin A (TSA). NaB and TSA reduced glycolytic flux, assayed by lactate release by H460 cells in a concentration dependent manner. NaB inhibited the expression of glucose transporter type 1 (GLUT 1), but substantially increased mitochondria bound hexokinase (HK) activity. NaB induced increase in HK activity was associated to isoform HK I and was accompanied by 1.5 fold increase in HK I mRNA expression and cognate protein biosynthesis. Lactate dehydrogenase (LDH) and pyruvate kinase (PYK) activities were unchanged by HDACis suggesting that the increase in the HK activity was not coupled to glycolytic flux. High resolution respirometry of H460 cells revealed NaB-dependent increased rates of oxygen consumption coupled to ATP synthesis. Metabolomic analysis showed that NaB altered the glycolytic metabolite profile of intact H460 cells. Concomitantly we detected an activation of the pentose phosphate pathway (PPP). The high O(2) consumption in NaB-treated cells was shown to be unrelated to mitochondrial biogenesis since citrate synthase (CS) activity and the amount of mitochondrial DNA remained unchanged. CONCLUSION: NaB and TSA induced an increase in mitochondrial function and oxidative metabolism in H460 lung tumor cells concomitant with a less proliferative cellular phenotype
    • …
    corecore