59 research outputs found

    Investigating the conformational stability of prion strains through a kinetic replication model

    Get PDF
    Prion proteins are known to misfold into a range of different aggregated forms, showing different phenotypic and pathological states. Understanding strain specificities is an important problem in the field of prion disease. Little is known about which PrP(Sc) structural properties and molecular mechanisms determine prion replication, disease progression and strain phenotype. The aim of this work is to investigate, through a mathematical model, how the structural stability of different aggregated forms can influence the kinetics of prion replication. The model-based results suggest that prion strains with different conformational stability undergoing in vivo replication are characterizable in primis by means of different rates of breakage. A further role seems to be played by the aggregation rate (i.e. the rate at which a prion fibril grows). The kinetic variability introduced in the model by these two parameters allows us to reproduce the different characteristic features of the various strains (e.g., fibrils' mean length) and is coherent with all experimental observations concerning strain-specific behavior

    Scaling properties of protein family phylogenies

    Get PDF
    One of the classical questions in evolutionary biology is how evolutionary processes are coupled at the gene and species level. With this motivation, we compare the topological properties (mainly the depth scaling, as a characterization of balance) of a large set of protein phylogenies with a set of species phylogenies. The comparative analysis shows that both sets of phylogenies share remarkably similar scaling behavior, suggesting the universality of branching rules and of the evolutionary processes that drive biological diversification from gene to species level. In order to explain such generality, we propose a simple model which allows us to estimate the proportion of evolvability/robustness needed to approximate the scaling behavior observed in the phylogenies, highlighting the relevance of the robustness of a biological system (species or protein) in the scaling properties of the phylogenetic trees. Thus, the rules that govern the incapability of a biological system to diversify are equally relevant both at the gene and at the species level.Comment: Replaced with final published versio

    Team reasoning and the rational choice of payoff-dominant outcomes in games

    Get PDF
    Standard game theory cannot explain the selection of payoff-dominant outcomes that are best for all players in common-interest games. Theories of team reasoning can explain why such mutualistic cooperation is rational. They propose that teams can be agents and that individuals in teams can adopt a distinctive mode of reasoning that enables them to do their part in achieving Pareto-dominant outcomes. We show that it can be rational to play payoff-dominant outcomes, given that an agent group identifies. We compare team reasoning to other theories that have been proposed to explain how people can achieve payoff-dominant outcomes, especially with respect to rationality. Some authors have hoped that it would be possible to develop an argument that it is rational to group identify. We identify some large—probably insuperable—problems with this project and sketch some more promising approaches, whereby the normativity of group identification rests on morality

    Distinct Functional Constraints Partition Sequence Conservation in a cis-Regulatory Element

    Get PDF
    Different functional constraints contribute to different evolutionary rates across genomes. To understand why some sequences evolve faster than others in a single cis-regulatory locus, we investigated function and evolutionary dynamics of the promoter of the Caenorhabditis elegans unc-47 gene. We found that this promoter consists of two distinct domains. The proximal promoter is conserved and is largely sufficient to direct appropriate spatial expression. The distal promoter displays little if any conservation between several closely related nematodes. Despite this divergence, sequences from all species confer robustness of expression, arguing that this function does not require substantial sequence conservation. We showed that even unrelated sequences have the ability to promote robust expression. A prominent feature shared by all of these robustness-promoting sequences is an AT-enriched nucleotide composition consistent with nucleosome depletion. Because general sequence composition can be maintained despite sequence turnover, our results explain how different functional constraints can lead to vastly disparate rates of sequence divergence within a promoter

    Integration of the Duke Activity Status Index into preoperative risk evaluation: a multicentre prospective cohort study.

    Get PDF
    BACKGROUND: The Duke Activity Status Index (DASI) questionnaire might help incorporate self-reported functional capacity into preoperative risk assessment. Nonetheless, prognostically important thresholds in DASI scores remain unclear. We conducted a nested cohort analysis of the Measurement of Exercise Tolerance before Surgery (METS) study to characterise the association of preoperative DASI scores with postoperative death or complications. METHODS: The analysis included 1546 participants (≥40 yr of age) at an elevated cardiac risk who had inpatient noncardiac surgery. The primary outcome was 30-day death or myocardial injury. The secondary outcomes were 30-day death or myocardial infarction, in-hospital moderate-to-severe complications, and 1 yr death or new disability. Multivariable logistic regression modelling was used to characterise the adjusted association of preoperative DASI scores with outcomes. RESULTS: The DASI score had non-linear associations with outcomes. Self-reported functional capacity better than a DASI score of 34 was associated with reduced odds of 30-day death or myocardial injury (odds ratio: 0.97 per 1 point increase above 34; 95% confidence interval [CI]: 0.96-0.99) and 1 yr death or new disability (odds ratio: 0.96 per 1 point increase above 34; 95% CI: 0.92-0.99). Self-reported functional capacity worse than a DASI score of 34 was associated with increased odds of 30-day death or myocardial infarction (odds ratio: 1.05 per 1 point decrease below 34; 95% CI: 1.00-1.09), and moderate-to-severe complications (odds ratio: 1.03 per 1 point decrease below 34; 95% CI: 1.01-1.05). CONCLUSIONS: A DASI score of 34 represents a threshold for identifying patients at risk for myocardial injury, myocardial infarction, moderate-to-severe complications, and new disability

    Measures of frailty in population-based studies: An overview

    Get PDF
    Although research productivity in the field of frailty has risen exponentially in recent years, there remains a lack of consensus regarding the measurement of this syndrome. This overview offers three services: first, we provide a comprehensive catalogue of current frailty measures; second, we evaluate their reliability and validity; third, we report on their popularity of use

    Experimental detection of short regulatory motifs in eukaryotic proteins: tips for good practice as well as for bad

    Full text link
    It has become clear in outline though not yet in detail how cellular regulatory and signalling systems are constructed. The essential machines are protein complexes that effect regulatory decisions by undergoing internal changes of state. Subcomponents of these cellular complexes are assembled into molecular switches. Many of these switches employ one or more short peptide motifs as toggles that can move between one or more sites within the switch system, the simplest being on-off switches. Paradoxically, these motif modules (termed short linear motifs or SLiMs) are both hugely abundant but difficult to research. So despite the many successes in identifying short regulatory protein motifs, it is thought that only the “tip of the iceberg” has been exposed. Experimental and bioinformatic motif discovery remain challenging and error prone. The advice presented in this article is aimed at helping researchers to uncover genuine protein motifs, whilst avoiding the pitfalls that lead to reports of false discovery. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1186/s12964-015-0121-y) contains supplementary material, which is available to authorized users

    Is evolvability evolvable?

    Get PDF
    In recent years, biologists have increasingly been asking whether the ability to evolve — the evolvability — of biological systems, itself evolves, and whether this phenomenon is the result of natural selection or a by-product of other evolutionary processes. The concept of evolvability, and the increasing theoretical and empirical literature that refers to it, may constitute one of several pillars on which an extended evolutionary synthesis will take shape during the next few years, although much work remains to be done on how evolvability comes about

    Valsalva maneuver unveils central baroreflex dysfunction with altered blood pressure control in persons with a history of mild traumatic brain injury

    Get PDF
    BACKGROUND: Patients with a history of mild TBI (post-mTBI-patients) have an unexplained increase in long-term mortality which might be related to central autonomic dysregulation (CAD). We investigated whether standardized baroreflex-loading, induced by a Valsalva maneuver (VM), unveils CAD in otherwise healthy post-mTBI-patients. METHODS: In 29 healthy persons (31.3 ± 12.2 years; 9 women) and 25 post-mTBI-patients (35.0 ± 13.2 years, 7 women, 4–98 months post-injury), we monitored respiration (RESP), RR-intervals (RRI) and systolic blood pressure (BP) at rest and during three VMs. At rest, we calculated parameters of total autonomic modulation [RRI-coefficient-of-variation (CV), RRI-standard-deviation (RRI-SD), RRI-total-powers], of sympathetic [RRI-low-frequency-powers (LF), BP-LF-powers] and parasympathetic modulation [square-root-of-mean-squared-differences-of-successive-RRIs (RMSSD), RRI-high-frequency-powers (HF)], the index of sympatho-vagal balance (RRI LF/HF-ratios), and baroreflex sensitivity (BRS). We calculated Valsalva-ratios (VR) and times from lowest to highest RRIs after strain (VR-time) as indices of parasympathetic activation, intervals from highest systolic BP-values after strain-release to the time when systolic BP had fallen by 90 % of the differences between peak-phase-IV-BP and baseline-BP (90 %-BP-normalization-times), and velocities of BP-normalization (90 %-BP-normalization-velocities) as indices of sympathetic withdrawal. We compared patient- and control-parameters before and during VM (Mann-Whitney-U-tests or t-tests; significance: P < 0.05). RESULTS: At rest, RRI-CVs, RRI-SDs, RRI-total-powers, RRI-LF-powers, BP-LF-powers, RRI-RMSSDs, RRI-HF-powers, and BRS were lower in patients than controls. During VMs, 90 %-BP-normalization-times were longer, and 90 %-BP-normalization-velocities were lower in patients than controls (P < 0.05). CONCLUSIONS: Reduced autonomic modulation at rest and delayed BP-decrease after VM-induced baroreflex-loading indicate subtle CAD with altered baroreflex adjustment to challenge. More severe autonomic challenge might trigger more prominent cardiovascular dysregulation and thus contribute to increased mortality risk in post-mTBI-patients
    corecore