19,745 research outputs found
Correlation of nasal morphology to air-conditioning and clearance function
Nasal morphology plays an important functional role in the maintenance of upper airway health. Identification of functional regions, based on morphological attributes, assists in correlating location to primary purpose. The effects of morphological variation on heat and water mass transport in congested and patent nasal airways were investigated by examining nasal cross-sectional MRI images from 8 healthy subjects. This research confirms the previous identification of functional air-conditioning regions within the nose. The first is the anterior region where the morphology prevents over-stressing of tissue heat and fluid supply near the nares. The second is the mid region where low flow velocity favours olfaction and particle deposition. The third is the posterior region which demonstrates an increase in heat and water mass flux coefficients to compensate for rising air humidity and temperature. Factors identified within the congested airway that favour enhanced mucocillary clearance were also identified
T-Bet and Eomes Regulate the Balance between the Effector/Central Memory T Cells versus Memory Stem Like T Cells
Memory T cells are composed of effector, central, and memory stem cells. Previous studies have implicated that both T-bet and Eomes are involved in the generation of effector and central memory CD8 T cells. The exact role of these transcription factors in shaping the memory T cell pool is not well understood, particularly with memory stem T cells. Here, we demonstrate that both T-bet or Eomes are required for elimination of established tumors by adoptively transferred CD8 T cells. We also examined the role of T-bet and Eomes in the generation of tumor-specific memory T cell subsets upon adoptive transfer. We showed that combined T-bet and Eomes deficiency resulted in a severe reduction in the number of effector/central memory T cells but an increase in the percentage of CD62LhighCD44low Sca-1+ T cells which were similar to the phenotype of memory stem T cells. Despite preserving large numbers of phenotypic memory stem T cells, the lack of both of T-bet and Eomes resulted in a profound defect in antitumor memory responses, suggesting T-bet and Eomes are crucial for the antitumor function of these memory T cells. Our study establishes that T-bet and Eomes cooperate to promote the phenotype of effector/central memory CD8 T cell versus that of memory stem like T cells. © 2013 Li et al
Noise auto-correlation spectroscopy with coherent Raman scattering
Ultrafast lasers have become one of the most powerful tools in coherent
nonlinear optical spectroscopy. Short pulses enable direct observation of fast
molecular dynamics, whereas broad spectral bandwidth offers ways of controlling
nonlinear optical processes by means of quantum interferences. Special care is
usually taken to preserve the coherence of laser pulses as it determines the
accuracy of a spectroscopic measurement. Here we present a new approach to
coherent Raman spectroscopy based on deliberately introduced noise, which
increases the spectral resolution, robustness and efficiency. We probe laser
induced molecular vibrations using a broadband laser pulse with intentionally
randomized amplitude and phase. The vibrational resonances result in and are
identified through the appearance of intensity correlations in the noisy
spectrum of coherently scattered photons. Spectral resolution is neither
limited by the pulse bandwidth, nor sensitive to the quality of the temporal
and spectral profile of the pulses. This is particularly attractive for the
applications in microscopy, biological imaging and remote sensing, where
dispersion and scattering properties of the medium often undermine the
applicability of ultrafast lasers. The proposed method combines the efficiency
and resolution of a coherent process with the robustness of incoherent light.
As we demonstrate here, it can be implemented by simply destroying the
coherence of a laser pulse, and without any elaborate temporal scanning or
spectral shaping commonly required by the frequency-resolved spectroscopic
methods with ultrashort pulses.Comment: To appear in Nature Physic
Flowering of kiwifruit (Actinidia deliciosa) is reduced by long photoperiods
Mature kiwifruit (Actinidia deliciosa ‘Hayward’) vines grown under standard orchard management were exposed to 16-h photoperiods from the longest day in summer until after leaf fall in autumn. Photoperiod extension was achieved with tungsten halogen lamps that produced 2–8 µmols m–2 s–1 photosynthetically active radiation. Long day treatments did not affect fruit dry matter or fruit weight at harvest during the growing season that the treatments were applied or during the following growing season. However, flowering was reduced by 22% during the spring following treatment application. As this reduction in flowering was not accompanied by a decrease in budbreak, the long day effect is not consistent with a delay in the onset of winter chilling. It is suggested therefore, that the observed reduction in flowering may be because of a diminution of floral evocation
Vacuum Stability of the wrong sign Scalar Field Theory
We apply the effective potential method to study the vacuum stability of the
bounded from above (unstable) quantum field potential. The
stability ( and the mass renormalization
( conditions force the effective
potential of this theory to be bounded from below (stable). Since bounded from
below potentials are always associated with localized wave functions, the
algorithm we use replaces the boundary condition applied to the wave functions
in the complex contour method by two stability conditions on the effective
potential obtained. To test the validity of our calculations, we show that our
variational predictions can reproduce exactly the results in the literature for
the -symmetric theory. We then extend the applications
of the algorithm to the unstudied stability problem of the bounded from above
scalar field theory where classical analysis prohibits the
existence of a stable spectrum. Concerning this, we calculated the effective
potential up to first order in the couplings in space-time dimensions. We
find that a Hermitian effective theory is instable while a non-Hermitian but
-symmetric effective theory characterized by a pure imaginary
vacuum condensate is stable (bounded from below) which is against the classical
predictions of the instability of the theory. We assert that the work presented
here represents the first calculations that advocates the stability of the
scalar potential.Comment: 21pages, 12 figures. In this version, we updated the text and added
some figure
A Compensatory Mutation Provides Resistance to Disparate HIV Fusion Inhibitor Peptides and Enhances Membrane Fusion
Fusion inhibitors are a class of antiretroviral drugs used to prevent entry of HIV into host cells. Many of the fusion inhibitors being developed, including the drug enfuvirtide, are peptides designed to competitively inhibit the viral fusion protein gp41. With the emergence of drug resistance, there is an increased need for effective and unique alternatives within this class of antivirals. One such alternative is a class of cyclic, cationic, antimicrobial peptides known as θ-defensins, which are produced by many non-human primates and exhibit broad-spectrum antiviral and antibacterial activity. Currently, the θ-defensin analog RC-101 is being developed as a microbicide due to its specific antiviral activity, lack of toxicity to cells and tissues, and safety in animals. Understanding potential RC-101 resistance, and how resistance to other fusion inhibitors affects RC-101 susceptibility, is critical for future development. In previous studies, we identified a mutant, R5-tropic virus that had evolved partial resistance to RC-101 during in vitro selection. Here, we report that a secondary mutation in gp41 was found to restore replicative fitness, membrane fusion, and the rate of viral entry, which were compromised by an initial mutation providing partial RC-101 resistance. Interestingly, we show that RC-101 is effective against two enfuvirtide-resistant mutants, demonstrating the clinical importance of RC-101 as a unique fusion inhibitor. These findings both expand our understanding of HIV drug-resistance to diverse peptide fusion inhibitors and emphasize the significance of compensatory gp41 mutations. © 2013 Wood et al
Behavioural stress responses predict environmental perception in European sea bass (Dicentrarchus labrax)
Individual variation in the response to environmental challenges depends partly on innate reaction norms, partly on experience-based cognitive/emotional evaluations that individuals make of the situation. The goal of this study was to investigate whether pre-existing differences in behaviour predict the outcome of such assessment of environmental cues, using a conditioned place preference/avoidance (CPP/CPA) paradigm. A comparative vertebrate model (European sea bass, Dicentrarchus labrax) was used, and ninety juvenile individuals were initially screened for behavioural reactivity using a net restraining test. Thereafter each individual was tested in a choice tank using net chasing as aversive stimulus or exposure to familiar conspecifics as appetitive stimulus in the preferred or non preferred side respectively (called hereafter stimulation side). Locomotor behaviour (i.e. time spent, distance travelled and swimming speed in each tank side) of each individual was recorded and analysed with video software. The results showed that fish which were previously exposed to appetitive stimulus increased significantly the time spent on the stimulation side, while aversive stimulus led to a strong decrease in time spent on the stimulation side. Moreover, this study showed clearly that proactive fish were characterised by a stronger preference for the social stimulus and when placed in a putative aversive environment showed a lower physiological stress responses than reactive fish. In conclusion, this study showed for the first time in sea bass, that the CPP/CPA paradigm can be used to assess the valence (positive vs. negative) that fish attribute to different stimuli and that individual behavioural traits is predictive of how stimuli are perceived and thus of the magnitude of preference or avoidance behaviour.European Commission [265957]; Portuguese Fundacao para a Ciencia e Tecnologia (FCT) [FRH/BPD/72952/2010]; FCT [SFRH/BD/80029/2011
Hot Streaks in Artistic, Cultural, and Scientific Careers
The hot streak, loosely defined as winning begets more winnings, highlights a
specific period during which an individual's performance is substantially
higher than her typical performance. While widely debated in sports, gambling,
and financial markets over the past several decades, little is known if hot
streaks apply to individual careers. Here, building on rich literature on
lifecycle of creativity, we collected large-scale career histories of
individual artists, movie directors and scientists, tracing the artworks,
movies, and scientific publications they produced. We find that, across all
three domains, hit works within a career show a high degree of temporal
regularity, each career being characterized by bursts of high-impact works
occurring in sequence. We demonstrate that these observations can be explained
by a simple hot-streak model we developed, allowing us to probe quantitatively
the hot streak phenomenon governing individual careers, which we find to be
remarkably universal across diverse domains we analyzed: The hot streaks are
ubiquitous yet unique across different careers. While the vast majority of
individuals have at least one hot streak, hot streaks are most likely to occur
only once. The hot streak emerges randomly within an individual's sequence of
works, is temporally localized, and is unassociated with any detectable change
in productivity. We show that, since works produced during hot streaks garner
significantly more impact, the uncovered hot streaks fundamentally drives the
collective impact of an individual, ignoring which leads us to systematically
over- or under-estimate the future impact of a career. These results not only
deepen our quantitative understanding of patterns governing individual
ingenuity and success, they may also have implications for decisions and
policies involving predicting and nurturing individuals with lasting impact
Double quantum dot with integrated charge sensor based on Ge/Si heterostructure nanowires
Coupled electron spins in semiconductor double quantum dots hold promise as
the basis for solid-state qubits. To date, most experiments have used III-V
materials, in which coherence is limited by hyperfine interactions. Ge/Si
heterostructure nanowires seem ideally suited to overcome this limitation: the
predominance of spin-zero nuclei suppresses the hyperfine interaction and
chemical synthesis creates a clean and defect-free system with highly
controllable properties. Here we present a top gate-defined double quantum dot
based on Ge/Si heterostructure nanowires with fully tunable coupling between
the dots and to the leads. We also demonstrate a novel approach to charge
sensing in a one-dimensional nanostructure by capacitively coupling the double
dot to a single dot on an adjacent nanowire. The double quantum dot and
integrated charge sensor serve as an essential building block required to form
a solid-state spin qubit free of nuclear spin.Comment: Related work at http://marcuslab.harvard.edu and
http://cmliris.harvard.ed
Small RNA Profile in Moso Bamboo Root and Leaf Obtained by High Definition Adapters
Moso bamboo (Phyllostachy heterocycla cv. pubescens L.) is an economically important fast-growing tree. In order to gain better understanding of gene expression regulation in this important species we used next generation sequencing to profile small RNAs in leaf and roots of young seedlings. Since standard kits to produce cDNA of small RNAs are biased for certain small RNAs, we used High Definition adapters that reduce ligation bias. We identified and experimentally validated five new microRNAs and a few other small non-coding RNAs that were not microRNAs. The biological implication of microRNA expression levels and targets of microRNAs are discussed
- …
