Coupled electron spins in semiconductor double quantum dots hold promise as
the basis for solid-state qubits. To date, most experiments have used III-V
materials, in which coherence is limited by hyperfine interactions. Ge/Si
heterostructure nanowires seem ideally suited to overcome this limitation: the
predominance of spin-zero nuclei suppresses the hyperfine interaction and
chemical synthesis creates a clean and defect-free system with highly
controllable properties. Here we present a top gate-defined double quantum dot
based on Ge/Si heterostructure nanowires with fully tunable coupling between
the dots and to the leads. We also demonstrate a novel approach to charge
sensing in a one-dimensional nanostructure by capacitively coupling the double
dot to a single dot on an adjacent nanowire. The double quantum dot and
integrated charge sensor serve as an essential building block required to form
a solid-state spin qubit free of nuclear spin.Comment: Related work at http://marcuslab.harvard.edu and
http://cmliris.harvard.ed