3,123 research outputs found

    Juvenile Dermatomyositis

    Full text link

    Understanding dog cognition by functional magnetic resonance imaging

    Get PDF

    Histone deacetylases in RA: epigenetics and epiphenomena

    Get PDF
    Reduced synovial expression of histone deacetylases (HDACs) is proposed to contribute to pathology in rheumatoid arthritis (RA) by enhancing histone-dependent access of transcription factors to promoters of inflammatory genes. In the previous issue of Arthritis Research & Therapy, Kawabata and colleagues provided independent evidence that HDAC activity is increased in the synovium and fibroblast-like synoviocytes (FLSs) of patients with RA and is paralleled by increased HDAC1 expression and synovial tumor necrosis factor-alpha (TNFα) production. Remarkably, stimulation of RA FLSs with TNFα specifically increases HDAC activity and HDAC1 expression, suggesting that changes in synovial HDAC activity and expression may be secondary to local inflammatory status

    Precision on leptonic mixing parameters at future neutrino oscillation experiments

    Get PDF
    We perform a comparison of the different future neutrino oscillation experiments based on the achievable precision in the determination of the fundamental parameters theta_{13} and the CP phase, delta, assuming that theta_{13} is in the range indicated by the recent Daya Bay measurement. We study the non-trivial dependence of the error on delta on its true value. When matter effects are small, the largest error is found at the points where CP violation is maximal, and the smallest at the CP conserving points. The situation is different when matter effects are sizable. As a result of this effect, the comparison of the physics reach of different experiments on the basis of the CP discovery potential, as usually done, can be misleading. We have compared various proposed super-beam, beta-beam and neutrino factory setups on the basis of the relative precision of theta_{13} and the error on delta. Neutrino factories, both high-energy or low-energy, outperform alternative beam technologies. An ultimate precision on theta_{13} below 3% and an error on delta of < 7^{\circ} at 1 sigma (1 d.o.f.) can be obtained at a neutrino factory.Comment: Minor changes, matches version accepted in JHEP. 30 pages, 9 figure

    EquiFACS: the Equine Facial Action Coding System

    Get PDF
    Although previous studies of horses have investigated their facial expressions in specific contexts, e.g. pain, until now there has been no methodology available that documents all the possible facial movements of the horse and provides a way to record all potential facial configurations. This is essential for an objective description of horse facial expressions across a range of contexts that reflect different emotional states. Facial Action Coding Systems (FACS) provide a systematic methodology of identifying and coding facial expressions on the basis of underlying facial musculature and muscle movement. FACS are anatomically based and document all possible facial movements rather than a configuration of movements associated with a particular situation. Consequently, FACS can be applied as a tool for a wide range of research questions. We developed FACS for the domestic horse (Equus caballus) through anatomical investigation of the underlying musculature and subsequent analysis of naturally occurring behaviour captured on high quality video. Discrete facial movements were identified and described in terms of the underlying muscle contractions, in correspondence with previous FACS systems. The reliability of others to be able to learn this system (EquiFACS) and consistently code behavioural sequences was high—and this included people with no previous experience of horses. A wide range of facial movements were identified, including many that are also seen in primates and other domestic animals (dogs and cats). EquiFACS provides a method that can now be used to document the facial movements associated with different social contexts and thus to address questions relevant to understanding social cognition and comparative psychology, as well as informing current veterinary and animal welfare practices

    Multidimensional cluster states using a single spin-photon interface coupled strongly to an intrinsic nuclear register

    Get PDF
    Photonic cluster states are a powerful resource for measurement-based quantum computing and loss-tolerant quantum communication. Proposals to generate multi-dimensional lattice cluster states have identified coupled spin-photon interfaces, spin-ancilla systems, and optical feedback mechanisms as potential schemes. Following these, we propose the generation of multi-dimensional lattice cluster states using a single, efficient spin-photon interface coupled strongly to a nuclear register. Our scheme makes use of the contact hyperfine interaction to enable universal quantum gates between the interface spin and a local nuclear register and funnels the resulting entanglement to photons via the spin-photon interface. Among several quantum emitters, we identify the silicon-29 vacancy centre in diamond, coupled to a nanophotonic structure, as possessing the right combination of optical quality and spin coherence for this scheme. We show numerically that using this system a 2x5-sized cluster state with a lower-bound fidelity of 0.5 and repetition rate of 65 kHz is achievable under currently realised experimental performances and with feasible technical overhead. Realistic gate improvements put 100-photon cluster states within experimental reach

    Mass hierarchy discrimination with atmospheric neutrinos in large volume ice/water Cherenkov detectors

    Full text link
    Large mass ice/water Cherenkov experiments, optimized to detect low energy (1-20 GeV) atmospheric neutrinos, have the potential to discriminate between normal and inverted neutrino mass hierarchies. The sensitivity depends on several model and detector parameters, such as the neutrino flux profile and normalization, the Earth density profile, the oscillation parameter uncertainties, and the detector effective mass and resolution. A proper evaluation of the mass hierarchy discrimination power requires a robust statistical approach. In this work, the Toy Monte Carlo, based on an extended unbinned likelihood ratio test statistic, was used. The effect of each model and detector parameter, as well as the required detector exposure, was then studied. While uncertainties on the Earth density and atmospheric neutrino flux profiles were found to have a minor impact on the mass hierarchy discrimination, the flux normalization, as well as some of the oscillation parameter (\Delta m^2_{31}, \theta_{13}, \theta_{23}, and \delta_{CP}) uncertainties and correlations resulted critical. Finally, the minimum required detector exposure, the optimization of the low energy threshold, and the detector resolutions were also investigated.Comment: 23 pages, 16 figure

    Requirements for a New Detector at the South Pole Receiving an Accelerator Neutrino Beam

    Full text link
    There are recent considerations to increase the photomultiplier density in the IceCube detector array beyond that of DeepCore, which will lead to a lower detection threshold and a huge fiducial mass for the neutrino detection. This initiative is known as "Phased IceCube Next Generation Upgrade" (PINGU). We discuss the possibility to send a neutrino beam from one of the major accelerator laboratories in the Northern hemisphere to such a detector. Such an experiment would be unique in the sense that it would be the only neutrino beam where the baseline crosses the Earth's core. We study the detector requirements for a beta beam, a neutrino factory beam, and a superbeam, where we consider both the cases of small theta_13 and large theta_13, as suggested by the recent T2K and Double Chooz results. We illustrate that a flavor-clean beta beam best suits the requirements of such a detector, in particular, that PINGU may replace a magic baseline detector for small values of theta_13 -- even in the absence of any energy resolution capability. For large theta_13, however, a single-baseline beta beam experiment cannot compete if it is constrained by the CERN-SPS. For a neutrino factory, because of the missing charge identification possibility in the detector, a very good energy resolution is required. If this can be achieved, especially a low energy neutrino factory, which does not suffer from the tau contamination, may be an interesting option for large theta_13. For the superbeam, where we use the LBNE beam as a reference, electron neutrino flavor identification and statistics are two of the main limitations. Finally, we demonstrate that, at least in principle, neutrino factory and superbeam can measure the density of the Earth's core to the sub-percent level for sin^2 2theta_13 larger than 0.01.Comment: 34 pages, 15 figures. Minor changes and accepted in JHE

    Mass hierarchy, 2-3 mixing and CP-phase with Huge Atmospheric Neutrino Detectors

    Full text link
    We explore the physics potential of multi-megaton scale ice or water Cherenkov detectors with low (∌1\sim 1 GeV) threshold. Using some proposed characteristics of the PINGU detector setup we compute the distributions of events versus neutrino energy EÎœE_\nu and zenith angle Ξz\theta_z, and study their dependence on yet unknown neutrino parameters. The (EΜ−Ξz)(E_\nu - \theta_z) regions are identified where the distributions have the highest sensitivity to the neutrino mass hierarchy, to the deviation of the 2-3 mixing from the maximal one and to the CP-phase. We evaluate significance of the measurements of the neutrino parameters and explore dependence of this significance on the accuracy of reconstruction of the neutrino energy and direction. The effect of degeneracy of the parameters on the sensitivities is also discussed. We estimate the characteristics of future detectors (energy and angle resolution, volume, etc.) required for establishing the neutrino mass hierarchy with high confidence level. We find that the hierarchy can be identified at 3σ3\sigma -- 10σ10\sigma level (depending on the reconstruction accuracies) after 5 years of PINGU operation.Comment: 39 pages, 21 figures. Description of Fig.3 correcte

    Non-standard interactions versus non-unitary lepton flavor mixing at a neutrino factory

    Full text link
    The impact of heavy mediators on neutrino oscillations is typically described by non-standard four-fermion interactions (NSIs) or non-unitarity (NU). We focus on leptonic dimension-six effective operators which do not produce charged lepton flavor violation. These operators lead to particular correlations among neutrino production, propagation, and detection non-standard effects. We point out that these NSIs and NU phenomenologically lead, in fact, to very similar effects for a neutrino factory, for completely different fundamental reasons. We discuss how the parameters and probabilities are related in this case, and compare the sensitivities. We demonstrate that the NSIs and NU can, in principle, be distinguished for large enough effects at the example of non-standard effects in the ÎŒ\mu-τ\tau-sector, which basically corresponds to differentiating between scalars and fermions as heavy mediators as leading order effect. However, we find that a near detector at superbeams could provide very synergistic information, since the correlation between source and matter NSIs is broken for hadronic neutrino production, while NU is a fundamental effect present at any experiment.Comment: 32 pages, 5 figures. Final version published in JHEP. v3: Typo in Eq. (27) correcte
    • 

    corecore