56 research outputs found

    Formation and structure of ionomer complexes from grafted polyelectrolytes

    Get PDF
    We discuss the structure and formation of Ionomer Complexes formed upon mixing a grafted block copolymer (poly(acrylic acid)-b-poly(acrylate methoxy poly(ethylene oxide)), PAA21-b-PAPEO14) with a linear polyelectrolyte (poly(N-methyl 2-vinyl pyridinium iodide), P2MVPI), called grafted block ionomer complexes (GBICs), and a chemically identical grafted copolymer (poly(acrylic acid)-co-poly(acrylate methoxy poly(ethylene oxide)), PAA28-co-PAPEO22) with a linear polyelectrolyte, called grafted ionomer complexes (GICs). Light scattering measurements show that GBICs are much bigger (~70–100 nm) and GICs are much smaller or comparable in size (6–22 nm) to regular complex coacervate core micelles (C3Ms). The mechanism of GICs formation is different from the formation of regular C3Ms and GBICs, and their size depends on the length of the homopolyelectrolyte. The sizes of GBICs and GICs slightly decrease with temperature increasing from 20 to 65 °C. This effect is stronger for GBICs than for GICs, is reversible for GICs and GBIC-PAPEO14/P2MVPI228, and shows some hysteresis for GBIC-PAPEO14/P2MVPI43. Self-consistent field (SCF) calculations for assembly of a grafted block copolymer (having clearly separated charged and grafted blocks) with an oppositely charged linear polyelectrolyte of length comparable to the charged copolymer block predict formation of relatively small spherical micelles (~6 nm), with a composition close to complete charge neutralization. The formation of micellar assemblies is suppressed if charged and grafted monomers are evenly distributed along the backbone, i.e., in case of a grafted copolymer. The very large difference between the sizes found experimentally for GBICs and the sizes predicted from SCF calculations supports the view that there is some secondary association mechanism. A possible mechanism is discussed

    Grafted ionomer complexes and their effect on protein adsorption on silica and polysulfone surfaces

    Get PDF
    We have studied the formation and the stability of ionomer complexes from grafted copolymers (GICs) in solution and the influence of GIC coatings on the adsorption of the proteins β-lactoglobulin (β-lac), bovine serum albumin (BSA), and lysozyme (Lsz) on silica and polysulfone. The GICs consist of the grafted copolymer PAA28-co-PAPEO22 {poly(acrylic acid)-co-poly[acrylate methoxy poly(ethylene oxide)]} with negatively charged AA and neutral APEO groups, and the positively charged homopolymers: P2MVPI43 [poly(N-methyl 2-vinyl pyridinium iodide)] and PAH∙HCl160 [poly(allylamine hydrochloride)]. In solution, these aggregates are characterized by means of dynamic and static light scattering. They appear to be assemblies with hydrodynamic radii of 8 nm (GIC-PAPEO22/P2MVPI43) and 22 nm (GIC-PAPEO22/PAH∙HCl160), respectively. The GICs partly disintegrate in solution at salt concentrations above 10 mM NaCl. Adsorption of GICs and proteins has been studied with fixed angle optical reflectometry at salt concentrations ranging from 1 to 50 mM NaCl. Adsorption of GICs results in high density PEO side chains on the surface. Higher densities were obtained for GICs consisting of PAH∙HCl160 (1.6 ÷ 1.9 chains/nm2) than of P2MVPI43 (0.6 ÷ 1.5 chains/nm2). Both GIC coatings strongly suppress adsorption of all proteins on silica (>90%); however, reduction of protein adsorption on polysulfone depends on the composition of the coating and the type of protein. We observed a moderate reduction of β-lac and Lsz adsorption (>60%). Adsorption of BSA on the GIC-PAPEO22/P2MVPI43 coating is moderately reduced, but on the GIC-PAPEO22/PAH∙HCl160 coating it is enhanced

    Grafted block complex coacervate core micelles and their effect on protein adsorption on silica and polystyrene

    Get PDF
    We have studied the formation and the stability of grafted block complex coacervate core micelles (C3Ms) in solution and the influence of grafted block C3M coatings on the adsorption of the proteins β-lactoglobulin, bovine serum albumin, and lysozyme. The C3Ms consist of a grafted block copolymer PAA21-b-PAPEO14 (poly(acrylic acid)-b-poly(acrylate methoxy poly(ethylene oxide)), with a negatively charged PAA block and a neutral PAPEO block and a positively charged homopolymer P2MVPI (poly(N-methyl 2-vinyl pyridinium iodide). In solution, these C3Ms partly disintegrate at salt concentrations between 50 and 100 mM NaCl. Adsorption of C3Ms and proteins has been studied with fixed-angle optical reflectometry, at salt concentrations ranging from 1 to 100 mM NaCl. In comparison with the adsorption of PAA21-b-PAPEO14 alone adsorption of C3Ms significantly increases the amount of PAA21-b-PAPEO14 on the surface. This results in a higher surface density of PEO chains. The stability of the C3M coatings and their influence on protein adsorption are determined by the composition and the stability of the C3Ms in solution. A C3M-PAPEO14/P2MVPI43 coating strongly suppresses the adsorption of all proteins on silica and polystyrene. The reduction of protein adsorption is the highest at 100 mM NaCl (>90%). The adsorbed C3M-PAPEO14/P2MVPI43 layer is partly removed from the surface upon exposure to an excess of β-lactoglobulin solution, due to formation of soluble aggregates consisting of β-lactoglobulin and P2MVPI43. In contrast, C3M-PAPEO14/P2MVPI228 which has a fivefold longer cationic block enhances adsorption of the negatively charged proteins on both surfaces at salt concentrations above 1 mM NaCl. A single PAA21-b-PAPEO14 layer causes only a moderate reduction of protein adsorption

    Gender-specific association of body composition with inflammatory and adipose-related markers in healthy elderly Europeans from the NU-AGE study

    Get PDF
    Objectives: The aim of this work was to examine the cross-sectional relationship between body composition (BC) markers for adipose and lean tissue and bone mass, and a wide range of specific inflammatory and adipose-related markers in healthy elderly Europeans. Methods: A whole-body dual-energy X-ray absorptiometry (DXA) scan was made in 1121 healthy (65–79 years) women and men from five European countries of the “New dietary strategies addressing the specific needs of elderly population for a healthy aging in Europe” project (NCT01754012) cohort to measure markers of adipose and lean tissue and bone mass. Pro-inflammatory (IL-6, IL-6Rα, TNF-α, TNF-R1, TNF-R2, pentraxin 3, CRP, alpha-1-acid glycoprotein, albumin) and anti-inflammatory (IL-10, TGF-β1) molecules as well as adipose-related markers such as leptin, adiponectin, ghrelin, and resistin were measured by magnetic bead-based multiplex-specific immunoassays and biochemical assays. Results: BC characteristics were different in elderly women and men, and more favorable BC markers were associated with a better adipose-related inflammatory profile, with the exception of skeletal muscle mass index. No correlation was found with the body composition markers and circulating levels of some standard pro- and anti-inflammatory markers like IL-6, pentraxin 3, IL-10, TGF-β1, TNF-α, IL-6Rα, glycoprotein 130, TNF-α-R1, and TNF-α-R2. Conclusions: The association between BC and inflammatory and adipose-related biomarkers is crucial in decoding aging and pathophysiological processes, such as sarcopenia. DXA can help in understanding how the measurement of fat and muscle is important, making the way from research to clinical practice. Key Points: • Body composition markers concordantly associated positively or negatively with adipose-related and inflammatory markers, with the exception of skeletal muscle mass index. • No correlation was found with the body composition markers and circulating levels of some standard pro- and anti-inflammatory markers like IL-6, pentraxin 3, IL-10, TGF-β1, TNF-α, IL-6Rα, gp130, TNF-α-R1, and TNF-α-R2. • Skeletal muscle mass index (SMI) shows a good correlation with inflammatory profile in age-related sarcopenia

    Scaled momentum distributions for K-S(0) and Λ /̄ Λ in DIS at HERA

    Get PDF
    Scaled momentum distributions for the strange hadrons K0S and Λ/Λ¯ were measured in deep inelastic ep scattering with the ZEUS detector at HERA using an integrated luminosity of 330 pb−1. The evolution of these distributions with the photon virtuality, Q 2, was studied in the kinematic region 10 < Q 2  < 40000 GeV2 and 0.001 < x < 0.75, where x is the Bjorken scaling variable. Clear scaling violations are observed. Predictions based on different approaches to fragmentation were compared to the measurements. Leading-logarithm parton-shower Monte Carlo calculations interfaced to the Lund string fragmentation model describe the data reasonably well in the whole range measured. Next-to-leading-order QCD calculations based on fragmentation functions, FFs, extracted from e + e − data alone, fail to describe the measurements. The calculations based on FFs extracted from a global analysis including e + e −, ep and pp data give an improved description. The measurements presented in this paper have the potential to further constrain the FFs of quarks, anti-quarks and gluons yielding K0S and Λ/Λ¯ strange hadrons

    A QCD analysis of ZEUS diffractive data

    Get PDF

    Deep inelastic scattering with leading protons or large rapidity gaps at HERA

    Get PDF

    Measurement of D+- and D0 production in deep inelastic scattering using a lifetime tag at HERA

    Get PDF
    The production of D-+/-- and D-0-mesons has been measured with the ZEUS detector at HERA using an integrated luminosity of 133.6 pb(-1). The measurements cover the kinematic range 5 < Q(2) < 1000 GeV2, 0.02 < y < 0.7, 1.5 < p(T)(D) < 15 GeV and |eta(D)| < 1.6. Combinatorial background to the D-meson signals is reduced by using the ZEUS microvertex detector to reconstruct displaced secondary vertices. Production cross sections are compared with the predictions of next-to-leading-order QCD, which is found to describe the data well. Measurements are extrapolated to the full kinematic phase space in order to obtain the open-charm contribution, F-2(c (c) over bar), to the proton structure function, F-2
    corecore