1,431 research outputs found

    Motor Unit Magnetic Resonance Imaging (MUMRI) In Skeletal Muscle

    Get PDF
    \ua9 2024 The Authors. Journal of Magnetic Resonance Imaging published by Wiley Periodicals LLC on behalf of International Society for Magnetic Resonance in Medicine.Magnetic resonance imaging (MRI) is routinely used in the musculoskeletal system to measure skeletal muscle structure and pathology in health and disease. Recently, it has been shown that MRI also has promise for detecting the functional changes, which occur in muscles, commonly associated with a range of neuromuscular disorders. This review focuses on novel adaptations of MRI, which can detect the activity of the functional sub-units of skeletal muscle, the motor units, referred to as “motor unit MRI (MUMRI).” MUMRI utilizes pulsed gradient spin echo, pulsed gradient stimulated echo and phase contrast MRI sequences and has, so far, been used to investigate spontaneous motor unit activity (fasciculation) and used in combination with electrical nerve stimulation to study motor unit morphology and muscle twitch dynamics. Through detection of disease driven changes in motor unit activity, MUMRI shows promise as a tool to aid in both earlier diagnosis of neuromuscular disorders and to help in furthering our understanding of the underlying mechanisms, which proceed gross structural and anatomical changes within diseased muscle. Here, we summarize evidence for the use of MUMRI in neuromuscular disorders and discuss what future research is required to translate MUMRI toward clinical practice. Level of Evidence: 5. Technical Efficacy: Stage 3

    Development and characterisation of a 3D multi-cellular in vitro model of normal human breast: a tool for cancer initiation studies.

    Get PDF
    Multicellular 3-dimensional (3D) in vitro models of normal human breast tissue to study cancer initiation are required. We present a model incorporating three of the major functional cell types of breast, detail the phenotype and document our breast cancer initiation studies. Myoepithelial cells and fibroblasts were isolated and immortalised from breast reduction mammoplasty samples. Tri-cultures containing non-tumorigenic luminal epithelial cells HB2, or HB2 overexpressing different HER proteins, together with myoepithelial cells and fibroblasts were established in collagen I. Phenotype was assessed morphologically and immunohistochemically and compared to normal breast tissue. When all three cell types were present, polarised epithelial structures with lumens and basement membrane production were observed, akin to normal human breast tissue. Overexpression of HER2 or HER2/3 caused a significant increase in size, while HER2 overexpression resulted in development of a DCIS-like phenotype. In summary, we have developed a 3D tri-cellular model of normal human breast, amenable to comparative analysis after genetic manipulation and with potential to dissect the mechanisms behind the early stages of breast cancer initiation

    A Stochastic Approach to Shortcut Bridging in Programmable Matter

    Full text link
    In a self-organizing particle system, an abstraction of programmable matter, simple computational elements called particles with limited memory and communication self-organize to solve system-wide problems of movement, coordination, and configuration. In this paper, we consider a stochastic, distributed, local, asynchronous algorithm for "shortcut bridging", in which particles self-assemble bridges over gaps that simultaneously balance minimizing the length and cost of the bridge. Army ants of the genus Eciton have been observed exhibiting a similar behavior in their foraging trails, dynamically adjusting their bridges to satisfy an efficiency trade-off using local interactions. Using techniques from Markov chain analysis, we rigorously analyze our algorithm, show it achieves a near-optimal balance between the competing factors of path length and bridge cost, and prove that it exhibits a dependence on the angle of the gap being "shortcut" similar to that of the ant bridges. We also present simulation results that qualitatively compare our algorithm with the army ant bridging behavior. Our work gives a plausible explanation of how convergence to globally optimal configurations can be achieved via local interactions by simple organisms (e.g., ants) with some limited computational power and access to random bits. The proposed algorithm also demonstrates the robustness of the stochastic approach to algorithms for programmable matter, as it is a surprisingly simple extension of our previous stochastic algorithm for compression.Comment: Published in Proc. of DNA23: DNA Computing and Molecular Programming - 23rd International Conference, 2017. An updated journal version will appear in the DNA23 Special Issue of Natural Computin

    Why the energy landscape of barnase is hierarchical

    Get PDF
    We have used NMR and computational methods to characterize the dynamics of the ribonuclease barnase over a wide range of timescales in free and inhibitor-bound states. Using temperature- and denaturant-dependent measurements of chemical shift, we show that barnase undergoes frequent and highly populated hinge bending. Using relaxation dispersion, we characterize a slower and less populated motion with a rate of 750 ± 200 s-¹, involving residues around the lip of the active site, which occurs in both free and bound states and therefore suggests conformational selection. Normal mode calculations characterize correlated hinge bending motions on a very rapid timescale. These three measurements are combined with previous measurements and molecular dynamics calculations on barnase to characterize its dynamic landscape on timescales from picoseconds to milliseconds and length scales from 0.1 to 2.5 nm. We show that barnase has two different large-scale fluctuations: one on a timescale of 10-⁹-10-⁶ s that has no free energy barrier and is a hinge bending that is determined by the architecture of the protein; and one on a timescale of milliseconds (i.e., 750 s-¹) that has a significant free energy barrier and starts from a partially hinge-bent conformation. These two motions can be described as hierarchical, in that the more highly populated faster motion provides a platform for the slower (less probable) motion. The implications are discussed. The use of temperature and denaturant is suggested as a simple and general way to characterize motions on the intermediate ns-μs timescale

    Transpiration from subarctic deciduous woodlands: environmental controls and contribution to ecosystem evapotranspiration

    Get PDF
    Potential land‐climate feedbacks in subarctic regions, where rapid warming is driving forest expansion into the tundra, may be mediated by differences in transpiration of different plant functional types. Here we assess the environmental controls of overstorey transpiration and its relevance for ecosystem evapotranspiration in subarctic deciduous woodlands. We measured overstorey transpiration of mountain birch canopies and ecosystem evapotranspiration in two locations in northern Fennoscandia, having dense (Abisko) and sparse (Kevo) overstories. For Kevo, we also upscale chamber‐measured understorey evapotranspiration from shrubs and lichen using a detailed land cover map. Sub‐daily evaporative fluxes were not affected by soil moisture, and showed similar controls by vapour pressure deficit and radiation across sites. At the daily timescale, increases in evaporative demand led to proportionally higher contributions of overstorey transpiration to ecosystem evapotranspiration. For the entire growing season, the overstorey transpired 33% of ecosystem evapotranspiration in Abisko and only 16% in Kevo. At this latter site, the understorey had a higher leaf area index and contributed more to ecosystem evapotranspiration compared to the overstorey birch canopy. In Abisko, growing season evapotranspiration was 27% higher than precipitation, consistent with a gradual soil moisture depletion over the summer. Our results show that overstorey canopy transpiration in subarctic deciduous woodlands is not the dominant evaporative flux. However, given the observed environmental sensitivity of evapotranspiration components, the role of deciduous trees in driving ecosystem evapotranspiration may increase with the predicted increases in tree cover and evaporative demand across subarctic regions

    Genomic and expression analyses define MUC17 and PCNX1 as predictors of chemotherapy response in breast cancer

    Get PDF
    Poor prognosis breast cancers are treated with cytotoxic chemotherapy, but often without any guidance from therapy predictive markers since universally-accepted markers are not currently available. Treatment failure, in the form of recurrences, is relatively common. We aimed to identify chemotherapy predictive markers and resistance pathways in breast cancer. Our hypothesis was that tumour cells remaining after neoadjuvant chemotherapy (NAC) contain somatic variants causing therapy resistance, while variants present pre-NAC but lost post-NAC cause sensitivity. Whole exome sequencing was performed on matched pre- and post-NAC cancer cells, which were isolated by laser microdissection, from 6 cancer cases, and somatic variants selected for or against by NAC were identified. Somatic variant diversity was significantly reduced after therapy (p<0.05). MUC17 variants were identified in 3 tumours and were selected against by NAC in each case, while PCNX1 variants were identified in 2 tumours and were selected for in both cases, implicating the function of these genes in defining chemoresponse. In vitro knock-down of MUC17 or PCNX1 was associated with significantly increased or decreased chemotherapy sensitivity respectively (p<0.05), further supporting their roles in chemotherapy response. Expression was tested for predictive value in two independent cohorts of chemotherapy-treated breast cancers (n=53, n=303). Kaplan-Meier analyses revealed that low MUC17 expression was significantly associated with longer survival after chemotherapy, while low PCNX1 was significantly associated with reduced survival. We concluded that therapy-driven selection of somatic variants allows identification of chemotherapy response genes. With respect to MUC17 and PCNX1, therapy-driven selection acting on somatic variants, in vitro knock-down data concerning drug sensitivity, and survival analysis of expression levels in patient cohorts all define the genes as mediators of and predictive markers for chemotherapy response in breast cancer

    Growing pains in children

    Get PDF
    We review the clinical manifestations of "growing pains", the most common form of episodic childhood musculoskeletal pain. Physicians should be careful to adhere to clear clinical criteria as described in this review before diagnosing a child with growing pain. We expand on current theories on possible causes of growing pains and describe the management of these pains and the generally good outcome in nearly all children

    Exploring the equity of GP practice prescribing rates for selected coronary heart disease drugs: a multiple regression analysis with proxies of healthcare need

    Get PDF
    Background There is a small, but growing body of literature highlighting inequities in GP practice prescribing rates for many drug therapies. The aim of this paper is to further explore the equity of prescribing for five major CHD drug groups and to explain the amount of variation in GP practice prescribing rates that can be explained by a range of healthcare needs indicators (HCNIs). Methods The study involved a cross-sectional secondary analysis in four primary care trusts (PCTs 1–4) in the North West of England, including 132 GP practices. Prescribing rates (average daily quantities per registered patient aged over 35 years) and HCNIs were developed for all GP practices. Analysis was undertaken using multiple linear regression. Results Between 22–25% of the variation in prescribing rates for statins, beta-blockers and bendrofluazide was explained in the multiple regression models. Slightly more variation was explained for ACE inhibitors (31.6%) and considerably more for aspirin (51.2%). Prescribing rates were positively associated with CHD hospital diagnoses and procedures for all drug groups other than ACE inhibitors. The proportion of patients aged 55–74 years was positively related to all prescribing rates other than aspirin, where they were positively related to the proportion of patients aged >75 years. However, prescribing rates for statins and ACE inhibitors were negatively associated with the proportion of patients aged >75 years in addition to the proportion of patients from minority ethnic groups. Prescribing rates for aspirin, bendrofluazide and all CHD drugs combined were negatively associated with deprivation. Conclusion Although around 25–50% of the variation in prescribing rates was explained by HCNIs, this varied markedly between PCTs and drug groups. Prescribing rates were generally characterised by both positive and negative associations with HCNIs, suggesting possible inequities in prescribing rates on the basis of ethnicity, deprivation and the proportion of patients aged over 75 years (for statins and ACE inhibitors, but not for aspirin)

    Robot education peers in a situated primary school study: personalisation promotes child learning

    Get PDF
    The benefit of social robots to support child learning in an educational context over an extended period of time is evaluated. Specifically, the effect of personalisation and adaptation of robot social behaviour is assessed. Two autonomous robots were embedded within two matched classrooms of a primary school for a continuous two week period without experimenter supervision to act as learning companions for the children for familiar and novel subjects. Results suggest that while children in both personalised and non-personalised conditions learned, there was increased child learning of a novel subject exhibited when interacting with a robot that personalised its behaviours, with indications that this benefit extended to other class-based performance. Additional evidence was obtained suggesting that there is increased acceptance of the personalised robot peer over a non-personalised version. These results provide the first evidence in support of peer-robot behavioural personalisation having a positive influence on learning when embedded in a learning environment for an extended period of time
    corecore