2,152 research outputs found

    Effects of cromakalim (BRL 34915) on potassium conductances in CA3 neurons of the guinea-pig hippocampus in vitro

    Get PDF
    The action of the potassium channel activator, cromakalim (BRL 34915), on membrane potential, input resistance and current-voltage-relationship of CA3 neurons in a slice preparation of the guinea-pig hippocampus was investigated by means of intracellular recordings. In the presence of tetrodotoxin, cromakalim (30–100 mol/l) produced a hyperpolarization up to 4 mV associated with a decrease in input resistance up to 10 MOhms. Determination of the equilibrium potential of the cromakalim action revealed that the hyperpolarization is due to the activation of a potassium conductance. This cromakalim-activated potassium conductance was voltage-dependent, i.e. it increased with hyperpolarization. Among a number of potassium channel blockers tested, only Cs+ (2 mmol/l) and Ba2+ (0.5 mmol/1) were able to inhibit the cromakalim-induced effects. Simultaneously, both cations suppressed the hyperpolarizing inward rectification (anomalous rectification) in these neurons, indicating that cromakalim activated or potentiated an inwardly rectifying potassium conductance. In addition, cromakalim slightly enhanced both amplitude and duration of afterhyperpolarizations following single calcium-dependent action potentials, suggesting that cromakalim might have a weak facilitatory effect on calcium-dependent potassium conductances

    Transient and selective blockade of adenosine A1-receptors by 8-cyclopentyl-1,3-dipropylxanthine (DPCPX) causes sustained epileptiform activity in hippocampal CA3 neurons of guinea pigs

    Get PDF
    The effects of endogenously released adenosine on the excitability of hippocampal neurons were studied using the novel and highly selective adenosine A1-receptor antagonist 8-cyclopentyl-1,3-dipropylxanthine (DPCPX). Extra- and intracellular recordings performed in area CA1 and CA3 of the guinea pig hippocampal slice preparation revealed that a transient suppression of an inhibitory purinergic tonus by DPCPX leads to sustained interictal-like epileptiform activity arising in area CA3. Once induced, the spontaneous burst discharges were apparently irreversible within the observation period, even after prolonged washout (2–3h) in normal solution. In contrast, the hyperpolarizing action of exogenous adenosine, which was substantially reduced by DPCPX, recovered within 30–60 min of drug washout, indicating that DPCPX was not irreversibly bound to the A1-receptor

    Disinhibition of hippocampal CA3 neurons induced by suppression of an adenosine A1 receptor-mediated inhibitory tonus: Pre- and postsynaptic components

    Get PDF
    Intracellular recordings were performed on hippocampal CA3 neuronsin vitro to investigate the inhibitory tonus generated by endogenously produced adenosine in this brain region. Bath application of the highly selective adenosine A1 receptor antagonist 1,3-dipropyl-8-cyclopentylxanthine at concentrations up to 100 nM induced both spontaneous and stimulus-evoked epileptiform burst discharges. Once induced, the 1,3-dipropyl-8-cyclopentylxanthine-evoked epileptiform activity was apparently irreversible even after prolonged superfusion with drug-free solution. The blockade of glutamatergic excitatory synaptic transmission by preincubation of the slices with the amino-3-hydroxy-5-methyl-4-isoxazolpropionic acid receptor antagonist 6-cyano-7-nitroquinoxaline-2,3-dione (10 ÎĽM), but not with theN-methyl-d-aspartate receptor antagonistd-2-amino-5-phosphonovaleric acid (50/ÎĽM), prevented the induction of epileptiform activity by 1,3-dipropyl-8-cyclopentylxanthine. The generation of the burst discharges was independent of the membrane potential, and the amplitude of the slow component of the paroxysmal depolarization shift increased with hyperpolarization, indicating that the 1,3-dipropyl-8-cyclopentylxanthine-induced bursts were synaptically mediated events. Recordings from tetrodotoxin-treated CA3 neurons revealed a strong postsynaptic component of endogenous adenosinergic inhibition. Both 1,3-dipropyl-8-cyclopentylxanthine and the adenosine-degrading enzyme adenosine deaminase produced an apparently irreversible depolarization of the membrane potential by about 20 mV. Sometimes, this depolarization attained the threshold for the generation of putative calcium spikes, but no potential changes resembling paroxysmal depolarization shift-like events were observed

    The low KM-phosphodiesterase inhibitor denbufylline enhances neuronal excitability in guinea pig hippocampus in vitro

    Get PDF
    The actions of the phosphodiesterase inhibitor denbufylline on the excitability of hippocampal neurons were investigated by means of extracellular and intracellular recordings. Denbufylline, which has been shown to selectively inhibit a low KM, Ca2+/calmodulin-independent phosphodiesterase isozyme, concentration-dependently increased the amplitude of the extracellularly recorded CAI population spike evoked by electrical stimulation of the Schaffer collateral/commissural pathway. Concentration-response-curves yielded an EC50 for denbufylline of 0.76 M. In comparison, the nonselective phosphodiesterase inhibitor 3-isobutyl-lmethylxanthine (IBMX) also produced an increase in the amplitude of the population spike. From the concentration-response-curve, which was steeper than that of denbufylline, an EC50 for IBMX of 1.04 M was obtained. However, despite their similar EC50 values, denbufylline was found to be significantly more potent at lower concentrations (<- 300 nM) than IBMX. Intracellular recordings from CAI pyramidal cells revealed postsynaptic actions of denbufylline (300 nM) as indicated by a small drug-induced depolarization (2 – 5 mV) associated with an increase in membrane input resistance by 10–20%. In addition, denbufylline blocked the accommodation of trains of action potentials evoked by the injection of depolarizing current pulses. The results suggest i) that accumulation of adenosine-3,5-monophosphate (CAMP) in the postsynaptic cell and/or in the presynaptic terminal produced by blockade of phosphodiesterases leads to enhanced synaptic transmission in the CAI area of the hippocampus and ii) that a low KM, Ca 2+/calmodulin-independent cAMP-phosphodiesterase is an important component involved in the regulation of the intracellular cAMP level at synapses of central nervous system neurons

    Effects of cromakalim (BRL 34915) on potassium conductances in CA3 neurons of the guinea-pig hippocampus in vitro

    Get PDF
    The action of the potassium channel activator, cromakalim (BRL 34915), on membrane potential, input resistance and current-voltage-relationship of CA3 neurons in a slice preparation of the guinea-pig hippocampus was investigated by means of intracellular recordings. In the presence of tetrodotoxin, cromakalim (30–100 mol/l) produced a hyperpolarization up to 4 mV associated with a decrease in input resistance up to 10 MOhms. Determination of the equilibrium potential of the cromakalim action revealed that the hyperpolarization is due to the activation of a potassium conductance. This cromakalim-activated potassium conductance was voltage-dependent, i.e. it increased with hyperpolarization. Among a number of potassium channel blockers tested, only Cs+ (2 mmol/l) and Ba2+ (0.5 mmol/1) were able to inhibit the cromakalim-induced effects. Simultaneously, both cations suppressed the hyperpolarizing inward rectification (anomalous rectification) in these neurons, indicating that cromakalim activated or potentiated an inwardly rectifying potassium conductance. In addition, cromakalim slightly enhanced both amplitude and duration of afterhyperpolarizations following single calcium-dependent action potentials, suggesting that cromakalim might have a weak facilitatory effect on calcium-dependent potassium conductances

    Treffen bayerischer Volkskundler in Passau

    Get PDF
    • …
    corecore