29 research outputs found

    s1a 5 molecular stratification of autoimmune diseases based on epigenetic profiles

    Get PDF
    Systemic autoimmune diseases (SADs) are a group of chronic inflammatory conditions with autoimmune aetiology and many common clinical features, leading to a difficult diagnosis or deciding the appropriate treatment. Finding new treatments or applying the existing ones in a more effective way is especially hard in SADs due to the heterogeneity of molecular mechanisms within the same disease class. Based on this premise, the first step towards establishing a precision medicine strategy for SADs is to reclassify these conditions at the molecular level, which might result in a more homogenous stratification in terms of pathological molecular pathways. It is well known that the interplay of DNA methylation patterns and environmental factors, and between these, is determinant in the regulation of the immune system. This, along with the fact that the genetic contribution to disease is dependent on regulatory variants with very small effects, and the low concordance for autoimmunity in monozygotic twins suggests that epigenetic regulation may play an important role in the development of these diseases. Thus, DNA methylation information might be a valuable marker to reclassify the autoimmune disorders molecularly. We performed an unsupervised clustering analysis of genome-wide DNA methylation profiling of 437 cases distributed across 7 different clinical entities (rheumatoid arthritis, systemic lupus erythematosus, systemic sclerosis, primary Sjogren´s syndrome, primary antiphospholipid antibody syndrome, mixed connective tissue disease and undifferentiated connective tissue disease) and 115 healthy individuals. In this analysis we were able to identify new groups of patients composed of the different clinical diagnoses but with common biological features

    Genetic architecture distinguishes systemic juvenile idiopathic arthritis from other forms of juvenile idiopathic arthritis: clinical and therapeutic implications

    Get PDF
    OBJECTIVES: Juvenile idiopathic arthritis (JIA) is a heterogeneous group of conditions unified by the presence of chronic childhood arthritis without an identifiable cause. Systemic JIA (sJIA) is a rare form of JIA characterised by systemic inflammation. sJIA is distinguished from other forms of JIA by unique clinical features and treatment responses that are similar to autoinflammatory diseases. However, approximately half of children with sJIA develop destructive, long-standing arthritis that appears similar to other forms of JIA. Using genomic approaches, we sought to gain novel insights into the pathophysiology of sJIA and its relationship with other forms of JIA. METHODS: We performed a genome-wide association study of 770 children with sJIA collected in nine countries by the International Childhood Arthritis Genetics Consortium. Single nucleotide polymorphisms were tested for association with sJIA. Weighted genetic risk scores were used to compare the genetic architecture of sJIA with other JIA subtypes. RESULTS: The major histocompatibility complex locus and a locus on chromosome 1 each showed association with sJIA exceeding the threshold for genome-wide significance, while 23 other novel loci were suggestive of association with sJIA. Using a combination of genetic and statistical approaches, we found no evidence of shared genetic architecture between sJIA and other common JIA subtypes. CONCLUSIONS: The lack of shared genetic risk factors between sJIA and other JIA subtypes supports the hypothesis that sJIA is a unique disease process and argues for a different classification framework. Research to improve sJIA therapy should target its unique genetics and specific pathophysiological pathways

    Overexpression of the Cytokine BAFF and Autoimmunity Risk

    Get PDF
    BACKGROUND\textbf{BACKGROUND}: Genomewide association studies of autoimmune diseases have mapped hundreds of susceptibility regions in the genome. However, only for a few association signals has the causal gene been identified, and for even fewer have the causal variant and underlying mechanism been defined. Coincident associations of DNA variants affecting both the risk of autoimmune disease and quantitative immune variables provide an informative route to explore disease mechanisms and drug-targetable pathways. METHODS\textbf{METHODS}: Using case-control samples from Sardinia, Italy, we performed a genomewide association study in multiple sclerosis followed by TNFSF13B locus-specific association testing in systemic lupus erythematosus (SLE). Extensive phenotyping of quantitative immune variables, sequence-based fine mapping, cross-population and cross-phenotype analyses, and gene-expression studies were used to identify the causal variant and elucidate its mechanism of action. Signatures of positive selection were also investigated. RESULTS\textbf{RESULTS}: A variant in TNFSF13B, encoding the cytokine and drug target B-cell activating factor (BAFF), was associated with multiple sclerosis as well as SLE. The disease-risk allele was also associated with up-regulated humoral immunity through increased levels of soluble BAFF, B lymphocytes, and immunoglobulins. The causal variant was identified: an insertion-deletion variant, GCTGT→A (in which A is the risk allele), yielded a shorter transcript that escaped microRNA inhibition and increased production of soluble BAFF, which in turn up-regulated humoral immunity. Population genetic signatures indicated that this autoimmunity variant has been evolutionarily advantageous, most likely by augmenting resistance to malaria. CONCLUSIONS\textbf{CONCLUSIONS}: A TNFSF13B variant was associated with multiple sclerosis and SLE, and its effects were clarified at the population, cellular, and molecular levels. (Funded by the Italian Foundation for Multiple Sclerosis and others.).Supported by grants (2011/R/13 and 2015/R/09, to Dr. Cucca) from the Italian Foundation for Multiple Sclerosis; contracts (N01-AG-1-2109 and HHSN271201100005C, to Dr. Cucca) from the Intramural Research Program of the National Institute on Aging, National Institutes of Health (NIH); a grant (FaReBio2011 “Farmaci e Reti Biotecnologiche di Qualità,” to Dr. Cucca) from the Italian Ministry of Economy and Finance; a grant (633964, to Dr. Cucca) from the Horizon 2020 Research and Innovation Program of the European Union; a grant (U1301.2015/AI.1157.BE Prat. 2015-1651, to Dr. Cucca) from Fondazione di Sardegna; grants (“Centro per la ricerca di nuovi farmaci per malattie rare, trascurate e della povertà” and “Progetto collezione di composti chimici ed attività di screening,” to Dr. Cucca) from Ministero dell’Istruzione, dell’Università e della Ricerca; grants (HG005581, HG005552, HG006513, and HG007022, to Dr. Abecasis) from the National Human Genome Research Institute; a grant (9-2011-253, to Dr. Todd) from JDRF; a grant (091157, to Dr. Todd) from the Wellcome Trust; a grant (to Dr. Todd) from the National Institute for Health Research (NIHR); and the NIHR Cambridge Biomedical Research Centre. Dr. Idda was a recipient of a Master and Back fellowship from the Autonomous Region of Sardinia

    Association of STAT4 and BLK, but not BANK1 or IRF5, with primary antiphospholipid syndrome.

    No full text

    European Forum on Antiphospholipid Antibodies: research in progress

    No full text
    The research projects of the European Forum on Antiphospholipid Antibodies are representative of how dynamic is this area of investigation. The present review is focused on the most recent projects of the Forum on the aetiopathogenic aspects of the antiphospholipid syndrome (APS). Studies on the genetic background of the APS are ongoing in order to better define the proximity between APS and full-blown systemic lupus erythematosus. However, the analysis of the polymorphisms of genes coding for inflammatory mediators may offer new information on the role of inflammatory processes in triggering thrombotic events as well as the whole susceptibility for developing the vascular manifestations. A systematic and wide detection of serological markers of infectious processes will give new insight on the role of infectious agents in favouring autoimmunity in APS. Owing to the well-known role of vitamin D3 defect in autoimmune disease, the detection of vitamin plasma levels in APS patients will offer the rationale for a possible therapeutic supplementation. Additional projects are aimed to better characterize the diagnostic/prognostic value of antiphospholipid antibodies (aPL) by defining their epitope specificity and binding avidity. Pregnancy complications represent the obstetric side of APS. Research projects are focussed on the role of complement activation in placenta damage and on the potential ability of aPL to affect the fertility. Finally, a study has been planned in order to draw definitive conclusions on the associations between aPL and atherosclerosis

    Protocol for large scale whole blood immune monitoring by mass cytometry and Cyto Quality Pipeline.

    Get PDF
    Mass cytometry (MC) is a powerful large-scale immune monitoring technology. To maximize MC data quality, we present a protocol for whole blood analysis together with an R package, Cyto Quality Pipeline (CytoQP), which minimizes the experimental artifacts and batch effects to ensure data reproducibility. We describe the steps to stimulate, fix, and freeze blood samples before acquisition to make them suitable for retrospective studies. We then detail the use of barcoding and reference samples to facilitate multicenter and multi-batch experiments. For complete details on the use and execution of this protocol, please refer to Rybakowska et al. (2021a) and (2021b)

    Replication of the TNFSF4 (OX40L) promoter region association with systemic lupus erythematosus.

    No full text
    The tumor necrosis factor ligand superfamily member 4 gene (TNFSF4) encodes the OX40 ligand (OX40L), a costimulatory molecule involved in T-cell activation. A recent study demonstrated the association of TNFSF4 haplotypes located in the upstream region with risk for or protection from systemic lupus erythematosus (SLE). To replicate this association, five single nucleotide polymorphisms (SNPs) tagging the previously associated haplotypes and passing the proper quality-control filters were tested in 1312 cases and 1801 controls from Germany, Italy, Spain and Argentina. The association of TNFSF4 with SLE was replicated in all the sets except Spain. There was a unique risk haplotype tagged by the minor alleles of the SNPs rs1234317 (pooled odds ratio (OR)=1.39, P=0.0009) and rs12039904 (pooled OR=1.38, P=0.0012). We did not observe association to a single protective marker (rs844644) or haplotype as the first study reported; instead, we observed different protective haplotypes, all carrying the major alleles of both SNPs rs1234317 and rs12039904. Association analysis conditioning on the haplotypic background confirmed that these two SNPs explain the entire haplotype effect. This first replication study confirms the association of genetic variation in the upstream region of TNFSF
    corecore