29 research outputs found

    Refinement-based verification of sequential implementations of Stateflow charts

    Get PDF
    Simulink/Stateflow charts are widely used in industry for the specification of control systems, which are often safety-critical. This suggests a need for a formal treatment of such models. In previous work, we have proposed a technique for automatic generation of formal models of Stateflow blocks to support refinement-based reasoning. In this article, we present a refinement strategy that supports the verification of automatically generated sequential C implementations of Stateflow charts. In particular, we discuss how this strategy can be specialised to take advantage of architectural features in order to allow a higher level of automation.Comment: In Proceedings Refine 2011, arXiv:1106.348

    Cellular automata for the self-stabilisation of colourings and tilings

    Get PDF
    International audienceWe examine the problem of self-stabilisation, as introduced by Dijkstra in the 1970's, in the context of cellular automata stabilising on k-colourings, that is, on infinite grids which are coloured with k distinct colours in such a way that adjacent cells have different colours. Suppose that for whatever reason (e.g., noise, previous usage, tampering by an adversary), the colours of a finite number of cells in a valid k-colouring are modified, thus introducing errors. Is it possible to reset the system into a valid k-colouring with only the help of a local rule? In other words, is there a cellular automaton which, starting from any finite perturbation of a valid k-colouring, would always reach a valid k-colouring in finitely many steps? We discuss the different cases depending on the number of colours, and propose some deterministic and probabilistic rules which solve the problem for k = 3. We also explain why the case k = 3 is more delicate. Finally, we propose some insights on the more general setting of this problem, passing from k-colourings to other tilings (subshifts of finite type)

    Antiinflammatory Therapy with Canakinumab for Atherosclerotic Disease

    Get PDF
    Background: Experimental and clinical data suggest that reducing inflammation without affecting lipid levels may reduce the risk of cardiovascular disease. Yet, the inflammatory hypothesis of atherothrombosis has remained unproved. Methods: We conducted a randomized, double-blind trial of canakinumab, a therapeutic monoclonal antibody targeting interleukin-1β, involving 10,061 patients with previous myocardial infarction and a high-sensitivity C-reactive protein level of 2 mg or more per liter. The trial compared three doses of canakinumab (50 mg, 150 mg, and 300 mg, administered subcutaneously every 3 months) with placebo. The primary efficacy end point was nonfatal myocardial infarction, nonfatal stroke, or cardiovascular death. RESULTS: At 48 months, the median reduction from baseline in the high-sensitivity C-reactive protein level was 26 percentage points greater in the group that received the 50-mg dose of canakinumab, 37 percentage points greater in the 150-mg group, and 41 percentage points greater in the 300-mg group than in the placebo group. Canakinumab did not reduce lipid levels from baseline. At a median follow-up of 3.7 years, the incidence rate for the primary end point was 4.50 events per 100 person-years in the placebo group, 4.11 events per 100 person-years in the 50-mg group, 3.86 events per 100 person-years in the 150-mg group, and 3.90 events per 100 person-years in the 300-mg group. The hazard ratios as compared with placebo were as follows: in the 50-mg group, 0.93 (95% confidence interval [CI], 0.80 to 1.07; P = 0.30); in the 150-mg group, 0.85 (95% CI, 0.74 to 0.98; P = 0.021); and in the 300-mg group, 0.86 (95% CI, 0.75 to 0.99; P = 0.031). The 150-mg dose, but not the other doses, met the prespecified multiplicity-adjusted threshold for statistical significance for the primary end point and the secondary end point that additionally included hospitalization for unstable angina that led to urgent revascularization (hazard ratio vs. placebo, 0.83; 95% CI, 0.73 to 0.95; P = 0.005). Canakinumab was associated with a higher incidence of fatal infection than was placebo. There was no significant difference in all-cause mortality (hazard ratio for all canakinumab doses vs. placebo, 0.94; 95% CI, 0.83 to 1.06; P = 0.31). Conclusions: Antiinflammatory therapy targeting the interleukin-1β innate immunity pathway with canakinumab at a dose of 150 mg every 3 months led to a significantly lower rate of recurrent cardiovascular events than placebo, independent of lipid-level lowering. (Funded by Novartis; CANTOS ClinicalTrials.gov number, NCT01327846.

    Quasi-Cyclic Codes

    No full text

    Backtracking-assisted multiplication

    No full text
    International audienceAbstract This paper introduces new p r q -based one-way functions and companion signature schemes. The new signature schemes are interesting because they do not belong to the two common design blueprints, which are the inversion of a trapdoor permutation and the Fiat–Shamir transform. In the basic signature scheme, the signer generates multiple RSA-like moduli n i = p i 2 q i and keeps their factors secret. The signature is a bounded-size prime whose Jacobi symbols with respect to the n i ’s match the message digest. The generalized signature schemes replace the Jacobi symbol with higher-power residue symbols. Given of their very unique design, the proposed signature schemes seem to be overlooked “missing species” in the corpus of known signature algorithms
    corecore