
HAL Id: hal-02159155
https://hal.inria.fr/hal-02159155v2

Submitted on 26 Nov 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Cellular automata for the self-stabilisation of colourings
and tilings

Nazim Fatès, Irène Marcovici, Siamak Taati

To cite this version:
Nazim Fatès, Irène Marcovici, Siamak Taati. Cellular automata for the self-stabilisation of colourings
and tilings. Proceedings of RP 2019 (International Conference on Reachability Problems), Springer,
pp.121-136, 2019, �10.1007/978-3-030-30806-3_10�. �hal-02159155v2�

https://hal.inria.fr/hal-02159155v2
https://hal.archives-ouvertes.fr

Cellular automata for the self-stabilisation

of colourings and tilings

Nazim Fatès∗, Irène Marcovici †and Siamak Taati‡

November 26, 2019

Abstract

We examine the problem of self-stabilisation, as introduced by Di-
jkstra in the 1970’s, in the context of cellular automata stabilising on
k-colourings, that is, on infinite grids which are coloured with k distinct
colours in such a way that adjacent cells have different colours. Suppose
that for whatever reason (e.g., noise, previous usage, tampering by an
adversary), the colours of a finite number of cells in a valid k-colouring
are modified, thus introducing errors. Is it possible to reset the system
into a valid k-colouring with only the help of a local rule? In other words,
is there a cellular automaton which, starting from any finite perturbation
of a valid k-colouring, would always reach a valid k-colouring in finitely
many steps? We discuss the different cases depending on the number
of colours, and propose some deterministic and probabilistic rules which
solve the problem for k 6= 3. We also explain why the case k = 3 is more
delicate. Finally, we propose some insights on the more general setting of
this problem, passing from k-colourings to other tilings (subshifts of finite
type).

Edited in : International Conference on Reachability Problems
(RP 2019), pp. 121-136, Springer. Pleaser refer to the editor’s site
for the final version :
https://doi.org/10.1007/978-3-030-30806-3_10

∗Inria Nancy, Université de Lorraine, CNRS, LORIA, F-54000, France,
nazim.fates@loria.fr
†IECL, Université de Lorraine, CNRS, Inria, LORIA, F-54000 Nancy, France
‡Bernoulli Institute, University of Groningen, Groningen, The Netherlands – The work of

ST was partially supported by NWO grant 612.001.409 of Tobias Müller.

1

1 Introduction

Self-stabilisation is a property omnipresent in biological systems. Indeed, living
cells always need to correct their defects in order to keep their behaviour as
stable as possible (see e.g. Ref. [2]). The study of self-stabilisation in compu-
tational systems was proposed by Dijkstra [4]. The objective is to incorporate
self-stabilisation in discrete parallel models of computation.

In the present article, we explore the phenomenon of self-stabilisation in the
context of two-dimensional cellular automata which operate on k-colourings.
To illustrate the problem, imagine that an artist has a plan to create a two-
dimensional tiling with the constraint that two adjacent tiles necessarily bear
different colours. When this tiling is realised, the artist realises that a) some
mistakes have occurred during the tiling process and b) the original tiling plan
has been lost. The question is to know whether it is possible to correct the
tiling to respect the constraints of non-adjacency of colours only by following
local rules. In other words, we can reformulate the question as a reachability
problem: given a set of admissible states of the system, under which conditions
is this set always reachable from the set of its finite perturbations?

The problem of designing self-correcting or self-stabilising cellular automata
has been explored since the 1970’s. Two main models of errors have been con-
sidered: a) the errors can happen at each time step and are thus concurrent with
the correction process [7,8,11,12] or, b) the errors are present at the beginning
and are then corrected [6]. Pippenger has studied this latter question, for the
binary case, where the configurations to correct are those which only contain a
unique colour [10]. He has shown that the problems can have positive or nega-
tive answers depending on the specification of the problem such as dimension,
symmetry constraints, etc.

We re-examine this problem in the setting of k-colourings. The cases k = 2
and k ≥ 5 are the simplest and the case k = 4 can be dealt with rather easily.
However, the case k = 3 is much more delicate. We will also explore the question
of symmetries of the rules we use. The case of k-colourings should be considered
as a first step towards a wider view of self-stabilisation in cellular automata. We
indicate some directions on how to consider more general tiling constraints.

2 Setting of the problem

Let Σ be a finite set that represents the different colours of the tiling. Given
two configurations x, y ∈ ΣZ2

, we write ∆(x, y) , {i ∈ Z2 : xi 6= yi} for the set
of sites at which x and y disagree.

A finite perturbation of a configuration x ∈ ΣZ2

is a configuration y ∈ ΣZ2

such that ∆(x, y) is finite. Given a set Λ ⊆ ΣZ2

, representing the set of valid
configurations, we denote by Λ̃ the set of finite perturbations of the elements of
Λ, that is:

Λ̃ , {y ∈ ΣZ2

: ∃x ∈ Λ,∆(x, y) is finite}.

2

Our goal is to find a parallel procedure acting in a local way that would, from
any element of Λ̃, reach and stabilise on an element of Λ in a finite number of
steps. The locality of the rule is expressed by the definition of a neighbourhood,
that is, an ordered list N = (n1, . . . , nk) of k elements from Z2, for some k ∈ N.
We use the model of cellular automata to take into account the distributed
aspect of the process: each cell c ∈ Z2 is updated according to a local rule f
that depends only on the states of the cells c+ n1, . . . , c+ nk.

Formally, a two-dimensional cellular automaton (CA) with neighbourhood

N is a mapping F : ΣZ2 → ΣZ2

for which there exists a function f : Σk → Σ
satisfying:

∀c ∈ Z2, F (x)c = f(xc+n1
, . . . , xc+nk

).

Now that we have set all the elements, we can define the notion of self-
stabilisation. We say that a cellular automaton F : ΣZ2 → ΣZ2

is self-stabilising
on Λ ⊆ ΣZ2

if it satisfies the following conditions:

(i) The configurations of Λ are fixed points of F : ∀x ∈ Λ, F (x) = x.

(ii) The configurations of Λ̃ evolve to Λ in finitely many steps: ∀y ∈ Λ̃, ∃t ∈
N, F t(y) ∈ Λ.

We will in particular focus on the case where the set Λ is the set of colourings
of Z2 with k distinct colours. Let k ≥ 2 be an integer, and let the set Σ =
{0, . . . , k − 1} represent the set of possible colours of the cells. We define the
set of k-colourings of Z2 by:

Λk , {x ∈ ΣZ2

: c, c′ ∈ Z2, ||c− c′||1 = 1 =⇒ xc 6= xc′}.

Our aim is to examine if there exist simple self-stabilising rules, depending
on the value of k. We also have a look at other families of subshifts of finite
type, that is, sets Λ defined by local constraints. More specifically, a nonempty
set Λ ⊆ ΣZ2

is a subshift of finite type (SFT) if there exists a finite set B ⊆ Z2

and a function u : ΣB → {0, 1} such that:

Λ = {x ∈ SZd

: ∀c ∈ Zd, u((xc′)c′∈c+B) = 1}.

In the definition above, the function u describes the set of allowed (image 1)
and forbidden (image 0) patterns of base B.

We will focus on cases where the SFT can be defined in terms of horizontal
and vertical constraints. We will call the elements of such an SFT a proximity
tiling. Formally, let us denote by (e1, e2) the standard basis of Z2. A nonempty

set Λ ⊆ ΣZ2

is a proximity tiling space if there exist functions v1, v2 : Σ2 → {0, 1}
such that:

Λ = {x ∈ ΣZ2

: ∀c ∈ Z2, v1(xc, xc+e1) = v2(xc, xc+e2) = 1}.

Note that the notion of proximity tilings we have introduced here is reminiscent
of tilings by Wang tiles, but this formalism is more adapted to our context. For

3

example, the set of k-colourings is simply the proximity tiling space defined by
the function v = v1 = v2 where v(a, b) = 1 if a 6= b, and 0 if a = b.

In designing self-stabilising rules and proving their correctness, we will often
examine the set of cells where the constraints are not respected. We thus intro-
duce different notions of error. For a configuration x ∈ ΣZ2

, a cell c ∈ Z2 is said
to have an ei-error (with respect to vi) if vi(xc, xc+ei) = 0. It has a (−ei)-error
if vi(xc−ei , xc) = 0. We will also use the terminology E-error, W-error, N-error,
S-error instead of respectively e1-error, (−e1)-error, e2-error, and (−e2)-error.
The set of cells having an error is defined by:

E(x) , {c ∈ Z2 : ∃e ∈ {±e1,±e2}, c has an e-error}.

A cell c ∈ Z2 is said to be error-free if it does not belong to E(x), meaning that
it obeys the local constraints in the four directions. Note that in somes cases,
even if E(x) contains only very few cells, it is necessary to modify a much larger
set of cells in order to reach a valid configuration (see Prop. 6.1).

We will also consider self-stabilising probabilistic CA. For probabilistic CA,
the outcome of the local rule is a probability distribution on Σ, and the cells
of the lattice are updated simultaneously and independently at each time step,
according to the distributions prescribed by the local rule. The local rule in
this case is given by a function ϕ : Σk → P(Σ), where P(Σ) denotes the set
of probability distributions on Σ. The probabilistic CA Φ defined by ϕ maps
a configuration x to a probability measure µ, where for each finite set C ⊆ Z2,
we have

µ
(
{y : ∀c ∈ C, yc = vc}

)
=
∏
c∈C

ϕ(xc+n1 , xc+n2 , . . . , xc+nk
)({vc}).

The trajectory of a probabilistic CA Φ with initial configuration x is thus a
Markov process X0, X1, . . . with X0 = x such that, for every t > 0, conditioned
on the value of the configurations X0, X1, . . . , Xt−1, the configuration Xt is
distributed according to the measure Φ(Xt−1). We say that a probabilistic CA
Φ is self-stabilising on Λ if:

(i) The configurations of Λ are left unchanged by Φ: ∀x ∈ Λ,Φ(x) = δx.

(ii) For every y ∈ Λ̃, there exists a finite (random) time T such that XT ∈ Λ
almost surely.

3 The case of 2-colourings

In this section, we study the self-stabilisation problem for 2-colourings. We
thus set Σ = {0, 1}, and consider the set Λ2. Note that Λ2 contains only two
elements, corresponding to the two (odd and even) chequerboard configurations.

4

t = 0 t = 2 t = 4

t = 10

Figure 1: Evolution of the cellular automaton for self-correction of the 2-
colourings.

3.1 Directional self-stabilisation by a deterministic CA

Let us define a cellular automaton F on ΣZ2

by:

∀c ∈ Z2, F (x)c =

{
1− xc if xc = xc+e1 = xc+e2 ,

xc otherwise.

The rule above is similar to the well-known majority rule of Toom used to
correct errors that appear on a uniform background [3,12].

Proposition The cellular automaton F defined above is self-stabilising on Λ2.

Proof. It is clear from the definition that ∀x ∈ Λ2, F (x) = x.
For each n ∈ N, define the triangle Tn = {(i, j) ∈ Z2 : i+ j ≤ n, i, j ≥ 0} on

the grid. Let x ∈ Λ2 (recall that x is thus a chequerboard configuration) and
take y ∈ Λ̃2 such that ∆(x, y) is finite. By translating x and y if needed, we can
assume without loss of generality that the difference set ∆(x, y) is included in the
triangle Tn for some n. It is then easy to verify that ∆

(
x, F (y)

)
⊆ Tn−1. Indeed,

for every cell outside Tn, the local rule does not modify the state, whereas for
the cells (i, j) which are inside Tn and satisfy i+ j = n, we have F (y)i,j = xi,j .
Iterating F we obtain ∆

(
x, F t(y)

)
⊆ Tn−t for each t ≥ 0. That is, as time

goes by, the set of disagreements becomes smaller (see Fig. 1). In particular,
for t = n+ 1, we get ∆

(
x, Fn+1(y)

)
⊆ T−1 = ∅, hence Fn+1(y) = x ∈ Λ2. This

means that the configuration y has been corrected in n+ 1 steps.

5

3.2 Isotropic self-stabilisation by a probabilistic CA

The cellular automaton F above provides a directional solution: the cells need
to distinguish the North and East directions. In the context of deterministic CA,
Pippenger has shown that requiring all the symmetries for the local rule can lead
to negative results [10]. By contrast, we now propose a probabilistic CA that
achieves the self-stabilisation with an isotropic rule, that is, a rule which treats
the neighbours “equally” and does not distinguish between the four directions
of the grid. This shows that the use of randomness can extend the range of
possibilities. More precisely, the rule we propose consists in applying a minority
function with probability α, and keeping the state unchanged with probability
1 − α. Such rules are called α-asynchronous and their study has received a
continuous attention in the last years [5] ; this structure is here used to get out
of the potential cyclic behaviours that would prevent the system from reaching
the desired stable configurations.

Formally, letN denote the von Neumann neighbourhood N = (0, e1, e2,−e1,−e2).

We define a probabilistic cellular automaton Φ on ΣZ2

by the local rule ϕ : Σ5 →
P(Σ) given by:

ϕ(q0, q1, . . . , q4) = αδminority (q0,q1,...,q4) + (1− α)δq0 ,

where δq is the Dirac measure on q, meaning that δq({q′}) = 1 if q = q′, and 0
otherwise, and where minority (a, b, c, d, e) equals 1 if a+ b+ c+ d+ e ≤ 2 and
0 otherwise.

Proposition For α ∈ (0, 1), the probabilistic cellular automaton Φ is self-
stabilising on Λ2.

Proof. Let us take x ∈ Λ2 (recall that x is thus a chequerboard configuration)
and y ∈ Λ̃2 such that ∆(x, y) is finite. Let X0, X1, . . . be the Markov process
described by Φ with initial configuration X0 = y. Let R be a rectangle such
that ∆(x, y) ⊆ R. For any c /∈ R, we have ϕ(xc, xc+e1 , xc+e2 , xc−e1 , xc−e2) =
ϕ(yc, yc+e1 , yc+e2 , yc−e1 , yc−e2) = δxc

, so that for all t ≥ 0, ∆(Xt, x) ⊆ R almost
surely. Furthermore, inside R, Φ behaves like an absorbing finite-state Markov
chain that eventually reaches the chequerboard configuration (xc)c∈R. Note
that from any state, with positive probability the chequerboard configuration
can be reached in at most |R| steps. This is because α < 1. Otherwise, a
monochromatic rectangle could blink between the two states all 0’s and all
1’s.

3.3 Extension to finite SFT

The methods presented above for the case k = 2 can be readily extended to all
the cases where Λ is a subshift of finite type that contains only a finite number of
configurations (with an arbitrary set of symbols Σ). Indeed, the configurations
of such a finite SFT are necessarily spatially periodic.

6

Let us consider an arbitrary finite SFT Λ on Σ = {0, . . . , k − 1}, for some
k ≥ 1. Then, for each configuration x ∈ Λ, there exist integers m,n ≥ 1 such
that σh

m(x) = σv
n(x) = x, where σh and σv denote the horizontal and vertical

shift maps. Taking the least common multiple of the collection of integers
obtained for the different configurations x ∈ Λ (all these integers are bounded
by the cardinality of Λ), we can find horizontal and vertical periods ph, pv ≥ 1
such that ∀x ∈ Λ, σv

pv(x) = σh
ph(x) = x. This means that the elements of Λ

are constant on every sublattice La,b = {(a+phi, b+pvj) : i, j ∈ Z2}. Therefore,
we can simply use Toom’s majority rule on each sublattice, that is, we define a
cellular automaton F on ΣZ2

by:

F (x)a,b = majority(xa,b, xa+ph,b, xa,b+pv),

where the majority function associates to three symbols the symbol which is
most present in this three symbols, with the convention that when the three
symbols are distinct, one can choose arbitrarily the value of the function. Note
however that even if Λ is a proximity tiling, the neighbourhood of the cellular
automaton F depends on the periods ph and pv and can be much larger than 1.

We can also design an isotropic probabilistic rule that corrects finite SFT. If
a state appears strictly more than twice among xa+ph,b, xa,b+pv , xa−ph,b, xa,b−pv ,
this state becomes the new value of xa,b. Otherwise, we randomly choose a new
state in the alphabet Σ. Again, all the errors stay within some enveloping
rectangle and are eventually corrected. We can replace both ph and pv by
LCM(ph, pv) in order to have an isotropic rule.

4 The case of k-colourings, for k ≥ 5

We now consider the case k ≥ 5. Recall that we have Σ = {0, 1, . . . , k − 1}.

4.1 Directional self-stabilisation by a deterministic CA

Let us introduce the following terminology. We say that a cell (i, j) has a NE-

error if it has either an N-error or an E-error. For x ∈ ΣZ2

, we denote by
ENE(x) the set of cells having a NE-error, that is:

ENE(x) , {(i, j) ∈ Z2 : xc = xc+e1 or xc = xc+e2}.

Let ψ : Σ4 → Σ be a function which assigns to each quadruplet of colours
(a, b, c, d) a colour which is not in the set {a, b, c, d}, for example ψ(a, b, c, d) =
min Σ \ {a, b, c, d}.

We define a cellular automaton F on ΣZ2

by:

∀c ∈ Z2, F (x)c =

{
ψ(xc−e1 , xc−e2 , xc+e1 , xc+e2) if c ∈ ENE(x)

xc otherwise.

7

Proposition Let k ≥ 5, the cellular automaton F defined above is self-
stabilising on Λk.

Proof. It is clear from the definition that ∀x ∈ Λk, F (x) = x. Let us now take
x ∈ Λ̃k. Without loss of generality, we can assume that there exists an integer
n ≥ 0 such that ENE(x) ⊆ Tn. (Recall that Tn = {(i, j) ∈ Z2 : i+ j ≤ n, i, j ≥
0}). One can also check that after t steps, we have ENE(F t(x)) ⊆ Tn−t. Indeed,
the set of NE-errors can only decrease under the action of F : if c /∈ ENE(x), then
c /∈ ENE(F (x)), since by definition of F , if c+ e1 or c+ e2 takes a new colour in
F (x), that new colour is different from xc. Furthermore, if c ∈ ENE(x) is such
that c+ e1, c+ e2 /∈ ENE(x), then c /∈ ENE(F (x)), so that the set of NE-errors
is progressively eroded, from the NE to the SW. After n + 1 steps, we have:
ENE(Fn+1(x)) = ∅, meaning that the configuration is thus fully corrected:
Fn+1(x) ∈ Λk.

4.2 Isotropic self-stabilisation by a probabilistic CA

Let ψ : Σ4 → Σ be a function as above. For x ∈ ΣZ2

, let us recall that we
denote by E(x) the set of cells having an error, that is:

E(x) , {c ∈ Z2 : xc ∈ {xc±e1 , xc±e2}}

We define a probabilistic cellular automaton Φ on ΣZ2

which leaves the state of
cell c unchanged if c /∈ E(x) and updates it to a random value with distribution
αδψ(xc−e1

,xc−e2
,xc+e1

,xc+e2
) + (1−α)δxc

if c ∈ E(x). Once again, the use of an α-
asynchronous rule is destined to break the potential cycles that could be created
by the situations where the value of the update function is not deterministic (in
the case where only one colour is missing in the neighbourhood).

Proposition For k ≥ 5 and α ∈ (0, 1), the probabilistic cellular automaton Φ
defined above is self-stabilising on Λk.

Proof. Let x ∈ Λ̃k be an initial configuration. LetX0, X1, . . . denote the Markov
process described by Φ starting from X0 = x. For any c /∈ E(Xt), the state of
cell c remains unchanged, and the neighbouring cells of c cannot take the state
Xt
c, so that for each t′ ≥ t, E(Xt′) ⊆ E(Xt) almost surely. Furthermore, inside
E(x), Φ behaves like an absorbing finite state Markov chain, that eventually
reaches an allowed configuration. Indeed, let us consider the cells of E(Xt) that
have at least two correct neighbouring cells (there necessarily exist such cells,
since E(x) is finite). If the function ψ is applied to such a cell c, and if the
values of its neighbours remain the same, then c /∈ E(Xt+1). This happens with
probability at least α(1− α)2 > 0. Consequently, the probability of decreasing
the set of errors is strictly larger than this probability at each time step.

8

4.3 Extension to single-site fillable proximity tilings

We say that a proximity tiling is single-site fillable if there exists a map ψ : Σ4 →
Σ such that, for any possible choice (a, b, c, d) ∈ Σ4 of symbols surrounding
a cell, assigning the value α = ψ(a, b, c, d) to the central cell ensures that it
is error-free [9]. The two constructions above (directional self-stabilisation by
a deterministic CA, and isotropic self-stabilisation by a probabilistic cellular
automaton) naturally extend to all proximity tiling spaces that are single-site
fillable.

5 The case of 4-colourings

5.1 Directional self-stabilisation by a deterministic CA
that corrects by blocks

The case of 4-colourings (Σ = {0, 1, 2, 3}) is more delicate. Obviously, it is no
longer possible to use a function ψ with the same properties as above. Nev-
ertheless, we propose a solution where we show that the number of errors is
decreased by updating 2-squares, that is, 2 × 2-blocks of cells. We explain the
possibility of this update in the next lemma, and the show how to apply this
update without generating conflicts.

Lemma

For any possible choice (a, b, c, d, e, f, g, h) ∈ Σ8

of symbols surrounding a 2-square (see right),
there exist a choice (α, β, γ, δ) ∈ Σ4 for the cells
of the 2-square such that the four cells of the
2-square are error-free.

α

β

δ

γ

a

b

c d

f

e

h g

Proof. If {a, d, e, h} (Σ, then we can choose a colour from Σ \ {a, d, e, h} and
assign it to both α and γ. We are then sure that we can find suitable colours for
the two remaining cells, since each of these two cells is surrounded by at most
three different colours. In the same way, if {b, c, f, g} (Σ, we can find a valid
pattern.

Let us now assume that {a, d, e, h} = {b, c, f, g} = Σ. Without loss of
generality, we can assume that a = 0, h = 1, d = 2, e = 3. The set of allowed
colours for α is then {2, 3}, and the set of allowed colours for γ is {0, 1}. If
the allowed colours for β and δ are {0, 1} and {2, 3} respectively, then a valid
pattern is given by (α, β, γ, δ) = (2, 0, 1, 3). If the allowed colours for β and
δ are {0, 2}, {1, 3} respectively, then a valid pattern is given by (α, β, γ, δ) =
(2, 0, 1, 3). The other cases are analogous.

We can now design a CA that corrects finite perturbations of Λ4. Let ψ :
Σ8 → Σ4 be a function that maps some (a, b . . . , h) ∈ Σ8 to a quadruplet
(α, β, γ, δ) ∈ Σ4 such that the pattern formed by these values as illustrated
above is an error-free pattern.

9

Figure 2: Illustration of the definition of the cellular automaton used to correct
4-colourings. The central cell is a NE-corner if one of the red/dark gray lines
(North or East or both) presents a mistake and all the green/light gray lines are
free of errors. The 2-square whose NE-corner is the central cell is then corrected
by the cellular automaton.

Our aim is to use this function ψ to correct non-overlapping 2-squares, by
ensuring that the correcting rule applies without conflicts. In order to do this,
we first identify a set of cells that will play the role of the top-right cells of the
2-squares that will be updated.

For a configuration x ∈ ΣZ2

, let us denote again the set of cells having a
NE-error by ENE(x) = {c ∈ Z2 : xc = xc+e1 or xc = xc+e2}. We say that a cell
c ∈ Z2 is a NE-corner if: c ∈ ENE(x) and c+ e1, c− e1 + e2, c+ e2, c+ e1 + e2 6∈
ENE(x), see Fig. 2 for an illustration of the definition. We denote by CNE(x)

the set of NE-corners in a configuration x ∈ ΣZ2

, that is:

CNE(x) , {c ∈ ENE(x) ; c+ e1, c− e1 + e2, c+ e2, c+ e1 + e2 /∈ ENE(x)}.

Note that if x ∈ Λ̃4, then E(x) 6= ∅ ⇐⇒ CNE(x) 6= ∅. Indeed, if E(x)
is a non-empty set, then it contains at least one NE-error. Let us sweep the
configuration x by NW-SE diagonals, from the NE to the SW. Since E(x) is
finite, we can consider the first diagonal which contains a NE-error, and on this
diagonal, we consider the leftmost NE-error (which is also the uppermost). By
definition of a NE-corner, this NE-error is a NE-corner.

We define a CA F by the following rule: if a cell c = (i, j) ∈ Z2 is a NE-
corner, then apply ψ to the 2-square whose NE-corner is c, that is, we replace
the colours of the cells (i− 1, j − 1), (i− 1, j), (i, j), (i,−j − 1) by ψ(a, b, . . . , h),
where a = xi−2,j−1, b = xi−2,j , . . . , h = xi−1,j−2 (see above). Let us first observe
that the CA F given by this rule is well-defined. Indeed, by definition of a NE-
corner, one can check that there are no two consecutive NE-corners, vertically
or horizontally, or in diagonal. Consequently, at each step, the 2-squares that
are updated do not overlap (note however that they can share some edges, in
which case there can be errors at these edges after applying the CA rule).

Proposition The cellular automaton F defined above is self-stabilising on Λ4.

Proof. Since the initial configuration x is assumed to be a finite perturbation

10

of a valid colouring, the number of NE-corners is finite. We prove that on any
configuration in Λ̃4 \Λ4, the number of NE-corners is strictly decreasing. Since
every configuration in Λ̃4 \Λ4 has at least one NE-corner, this implies that the
self-correction succeeds in finite time.

Let us consider the NE-corners of F t(x). The rule F consists in updating the
2-squares associated to these NE-corners. At the next time step, one can check
that all possible new NE-corners belong to these 2-squares that were updated.
Indeed, if a cell does not belong to such a 2-square, then it cannot become a
NE-corner at the next time step: if a neighbour of this cell were modified, then
its new colour respects the colour constraint. Furthermore, there is at most one
new NE-corner in each 2-square that is updated, by definition of a NE-corner.

Now, to end the proof, let us show that there exists at least one of these
2-squares that does not contain a NE-corner any more. This will prove that the
number of NE-corners is strictly decreasing. Let us sweep the configuration by
NW-SE diagonals, from the NE to the SW.

We consider the first diagonal which contains
a NE-corner. After applying F , the 2-squares
defined by the NE-corners that are on that di-
agonal do not contain a NE-corner any more.
Indeed, our method of sweeping ensures that the
two cells to the North and the two cells to the
East of this 2-square were not modified; for an
illustration, see this figure:

5.2 Isotropic self-stabilisation by a probabilistic CA

The problem of finding a rule which is isotropic and self-stabilising for four
colours is not straightforward. We now propose a rule which we believe answers
the problem, but for which we have no formal proof of success yet. Our idea
is to modify the method used for the case k ≥ 5, and make an exception when
there is no colour available to directly correct a cell.

So, we now define ψ as a random function which assigns to each quadruplet
of colours (a, b, c, d) a colour uniformly chosen in Σ \ {a, b, c, d} if this set is not
empty, and a colour uniformly chosen in Σ otherwise. We then consider the
probabilistic cellular automaton that, for any configuration x ∈ ΣZ2

, updates
to state ψ(xc−e1 , xc−e2 , xc+e1 , xc+e2) the cell c if it has an error (c ∈ E(x)), and
keeps the value xc otherwise.

Experimentally, we observe that this rule succeeds in correcting rapidly most
of the initial perturbations of valid tilings. However, unlike the case k ≥ 5, for
k = 4, we cannot ensure with the PCA above that the errors stay in some
bounded area.

We conjecture that from any finite perturbation of a valid tiling, this proba-
bilistic cellular automaton almost surely reaches in finite time a valid 4-colouring.

11

To support this claim, one can try to find configurations for which this rule may
fail in correcting in finite time for some particular configurations.

Consider the following configuration:

1 2 3 0 1 2 3 0 1 2 3 0 1 2
3 0 1 2 3 0 1 2 3 0 1 2 3 0
2 3 0 1 2 3 0 0 1 2 3 0 1 2
0 1 2 3 0 1 2 3 0 1 2 3 0 1
2 3 0 1 2 3 0 1 2 3 0 1 2 3

It has two cells in error and is such that all cells, even the two that are in
error, see the three other colours in their neighbourhood. Consequently, if a cell
changes its state alone, it will remain in error. For this specific configuration,
some kind of coordination is thus necessary, which cannot here occur by a specific
mechanism as for the deterministic case.

It might thus be thought at first that errors may propagate arbitrary far
from their origin. However, we experimentally observe that it is not the case:
errors have a tendency to stay in the same area, and the correcting process is
more rapid than the error-diffusion process. Surprisingly enough, even when
the cells are updated successively at random (fully asynchronous case), we also
noticed that the rule succeeds in correcting errors. Indeed, when the errors
propagate, they modify the configuration in such a way that the property of
seeing three different colours in the neighbourhood is lost, which finally enables
a correction to take place. By comparison, we believe that for this configuration
and this rule, having the possibility to make parallel updates, even if it means
using α-asynchronous updates, can only increase the possibilities of correction.
It is an open problem to give a formal proof of this self-stabilisation property.

5.3 Extension to `-fillable proximity tilings

We say that a proximity tiling is strongly `-fillable if there exists a map ψ :
Σ4` → Σ`

2

such that, for any possible choice (a1, . . . , a2`) ∈ Σ4` of symbols
surrounding an `-square, assigning the values ψ(a1, . . . , a2`) to the inner cells of
the `-square ensures that each cell of the `-square is error-free. (Note that here,
we do not assume any further condition on (a1, . . . , a2`) ∈ Σ4`; we refer again
to [1] for a similar but weaker condition of `-fillability). The self-stabilisation
by a deterministic CA described above extends to all proximity tilings that
are strongly `-fillable. One can indeed extend the notion of NE-corner in that
context, see Fig. 3 for an illustration in the case ` = 3. The definition of the
CA and the proof that it is self-stabilising can then be easily adapted.

12

Figure 3: Illustration of the definition of the cellular automaton used to correct
a 3-fillable proximity tiling. The central cell is a NE-corner if one of the red
lines (North or East or both) presents a mistake and all the green lines are free
of errors. The 3-square whose NE-corner is the central cell is then corrected by
the cellular automaton.

6 The case of 3-colourings

6.1 Necessity to correct arbitrarily far from the locations
of errors

For k ≥ 4, with the rules defined in the previous sections, one can correct the
errors in a local way: if we observe a finite island of errors, then we can always
correct the island without modifying the configuration at a distance larger from
1 or 2 from the island. Let us now show that this property no longer holds for
k = 3. To this end, we will change our representation and associate to each
configuration that is a 3-colouring a configuration in the so-called six-vertex
model.

This model is obtained by associating an arrow to each couple of neighbour-
ing cells (horizontal or vertical), these arrows are represented at the boundary
between the two cells according to the following rules. Let q and q′ be the
colours of the two neighbouring cells. As we have q′ 6= q, it follows that we
either have q′ = q+ 1 mod 3 or q′ = q−1 mod 3. Depending on this, we draw
the arrow in one direction or the other.

• The vertical boundaries which separate q and q + 1 (resp. q − 1) have an
arrow pointing up (resp. down).

• The horizontal boundaries which separate q and q + 1 (resp. q − 1) have
a right (resp. left) arrow.

These conventions are represented on Fig. 4.
One can then check that starting from a 3-colouring, the resulting arrow

configuration is such that at each vertex, there are exactly two incoming arrows
and two outgoing arrows. Conversely, from a six-vertex configuration, there are
three 3-colourings giving that arrow configuration. (Once we choose the colour
of one cell, all the other colours can be deduced).

13

q q + 1

q q − 1
q

q + 1

q

q − 1

2 1 2 0

0 2 0 1

2 0 1 0

0 1 2 1

Figure 4: The convention used for encoding 3-colouring configurations in the
six-vertex model and an example of a configuration with its associated six-vertex
image.

Figure 4 shows an example of such an encoding of a valid colouring. By
contrast, Fig. 5 displays a configuration which holds a finite perturbation of a
3-colouring.

Notice that we have drawn in bold the arrows pointing to the South and
the ones pointing to the West. The knowledge of the position of these two
types of arrows is sufficient to fully describe the configuration; indeed, the other
horizontal or vertical arrows have to be East or North arrows, respectively.

In the example given, let us imagine that we have fixed the value of a set
of cells that are located at the boundary of a square. We call this set of cells
the boundary square, and we want to fill the inner part of that boundary square
with an admissible configuration. One can verify that the only way to fill this
inner part corresponds to a six-vertex configuration that would have a direct
South vertical line: indeed, there is only one bold incoming arrow and one bold
outgoing arrow in the boundary square, and we have to connect them. So, we
can construct finite perturbations of 3-colourings that present only two cells in
error (one single interface with same colours), but for which we need to modify
a domain of size arbitrary large in order to recover a valid configuration. This
is expressed by the following proposition.

Proposition For any m ∈ N, there exists a configuration y ∈ Λ̃3 such that
card E(y) = 2, and ∀x ∈ Λ3, card ∆(x, y) ≥ m.

6.2 Deterministic self-stabilisation by a CA with addi-
tional states

In order to decide if a boundary square is fillable or not, we just need to know
if it is possible to associate each incoming arrow with an outgoing arrow. This
is easy to do with sequential operations and additional symbols which do not
appear in the initial condition. Starting from the NE-corner, let us enumerate
the incoming arrows on the North and then West sides, from 1 to ni, and
the outgoing arrows on the East and then South sides, from 1 to no. The
boundary square is fillable if we can match each incoming arrow number k

14

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

0

0

0

0

1

1

1

1

1

2

2

2

Figure 5: Example of a finite perturbation of a 3-colouring and its associated
six-vertex configuration. South and West arrows are shown in bold, dashed cells
indicate the boundary square.

with the outgoing arrow number k by a SE-path of arrows (which implies that
ni = no). In order to know if this can be done, we try to match successively the
incoming and outgoing arrows from 1 to ni = no by disjoint paths, by moving
E if the edge has not already been selected, and S otherwise. As an additional
condition, we need to ensure at each time step that the path does not go beyond
the corresponding outgoing arrow or come across another path. This procedure
succeeds if and only if there is at least one admissible matching, see the diagram
below for an illustration:

123

4

5

1

2

3
4

5

Using this method, let us sketch how to design a deterministic CA that
corrects finite perturbations of 3-colourings with additional states. First, we
mark error cells and create a boundary square around them. We then use a
kind of Turing machine that calculates if this boundary square is fillable or not,

15

with the procedure above. If it is fillable, we fill it with the solution associated
to the six-vertex configuration given by the procedure. Otherwise, we consider
a new boundary square with a box of size increased by one unit. When different
boundary squares meet, they merge and restart their process.

It is an open problem to know if a solution without additional symbols exists.
Moreover, in contrast with the previous the sections, here we cannot use

the method of taking an available colour or a random colour when no colour is
available. We noticed experimentally that the errors diffuse and we could not
find any rule that keeps them confined, even in statistical terms.

7 Conclusion

We presented the study of self-stabilisation problems for k-colourings and for
some more general tilings spaces. The easiest cases are k = 2 and k ≥ 5. For k =
4, deterministic rules still exist but are not as straightforward to design. In the
probabilistic setting, we could propose symmetric rules, which experimentally
perform well, but for which no formal proofs are available yet. The three-colour
case is the most challenging and it is an open problem to know if efficient
deterministic solutions do exist.

In this work, we have searched for solutions that operate in a “reasonable”
time scale. However, when no such rules are found, it is still possible to use a
kind of “brute-force” process where errors are initially at the centre of a self-
correcting zone. The cellular automaton should then test sequentially if there
are admissible solutions inside this zone. If the answer is positive, then the part
is corrected, if not, then the zone is extended by one cell in each direction. When
two such zones meet, there should be some procedures to merge the zones and
“restart” the process. It is clear that even though each step can be thought of
separately in a clear way, putting all the steps together in a cellular automaton
that effectively works is a huge task. Moreover, the time needed for such a rule
to operate would be more than exponential in the number of errors.

The question might also be raised for the solutions which make use of addi-
tional symbols: can one find rules which also resist the introduction of additional
symbols in the initial condition? Another important problem that we are cur-
rently addressing is to consider the case where the errors are initially randomly
distributed on all the grid.

References

[1] N. Alon, R. Briceño, N. Chandgotia, A. Magazinov, and Y. Spinka. Mixing
properties of colorings of the Zd lattice. Preprint arXiv 1903.11685, 2019.

[2] A. Bȩbenek and I. Ziuzia-Graczyk. Fidelity of DNA replication—a matter
of proofreading. Current Genetics, (64):985–996, 2018.

16

[3] A. Bušić, N. Fatès, J. Mairesse, and I. Marcovici. Density classification on
infinite lattices and trees. Electron. J. Probab., 18:no. 51, 22, 2013.

[4] E. W. Dijkstra. Self-stabilization in spite of distributed control. In Selected
writings on computing: a personal perspective, pages 41–46. Springer, 1982.

[5] N. Fatès. Asynchronous cellular automata. In Encyclopedia of Complexity
and Systems Science, pages 1–21. Springer Berlin Heidelberg, 2018.

[6] P. Gach, G. L. Kurdyumov, and L. A. Levin. One-dimensional uniform
arrays that wash out finite islands. Problems of Information Transmission,
14(3):223–226, 1978.

[7] P. Gács. Reliable computation with cellular automata. Journal of Computer
and System Sciences, 32(1):15–78, 1986.

[8] P. Gács and J. Reif. A simple three-dimensional real-time reliable cellular
array. Journal of Computer and System Sciences, 36(2):125–147, 1988.

[9] B. Marcus and R. Pavlov. An integral representation for topological pres-
sure in terms of conditional probabilities. Israel Journal of Mathematics,
207(1):395–433, 2017.

[10] N. Pippenger. Symmetry in self-correcting cellular automata. Journal of
Computer and System Sciences, 49(1):83–95, 1994.

[11] A. L. Toom. Nonergodic multidimensional system of automata. Problemy
Peredachi Informatsii, 10(3):70–79, 1974.

[12] A. L. Toom. Stable and attractive trajectories in multicomponent systems.
In Multicomponent Random Systems, volume 6 of Adv. Probab. Related
Topics, pages 549–575. Dekker, New York, 1980.

17

