122 research outputs found

    Use of Headed Bars as Shear Reinforcement

    Get PDF
    Thirty-nine beams with a shear span-to-depth ratio of 3 were tested with the goal of determining whether headed deformed bars can be used in reinforced concrete members in place of stirrups as shear reinforcement as well as whether shear reinforcement with yield strengths up to 80 ksi [550 MPa] may be used without problems related to strength or serviceability. Grade 60 and Grade 80 [Grade 420 and Grade 550] No. 3, No. 4, and No. 6 [No. 10, No. 13, and No. 16] headed bars and stirrups were used as transverse reinforcement, and were spaced between onequarter and one-half of the member effective depth. The shear strength of members reinforced with U stirrups and crossties was compared with the strength of matching specimens reinforced with headed bars as shear reinforcement. Stirrups were anchored around longitudinal bars, as required by ACI 318-14. Headed bars were anchored using one of three details: (1) engaged with longitudinal bars, that is, with the bearing face of the head in contact with a longitudinal bar; (2) not engaged with longitudinal reinforcement, with the headed bar outside of the longitudinal reinforcement and close to the side of the member; and (3) not engaged with longitudinal reinforcement, with the headed bar inside of the longitudinal reinforcement and at least 4 in. from the side of the member. Member depths ranged from 12 to 48 in. [310 to 1220 mm] with widths of 24 and 42 in. [620 and 1070 mm]. Test specimens were designed to represent beams, walls, and mat foundations. Modifications to the ACI 318-14 Code are proposed, which will in turn impact the design of nuclear power plants worldwide through changes in ACI 349-13 and ACI 359-13. The results show that members with adequately anchored headed deformed bars have shear strengths that are equivalent to members with stirrups. Adequate anchorage of headed bars is provided by (1) direct contact between the bearing face of the head with longitudinal reinforcement or (2) placing the headed bars inside at least one longitudinal bar and providing side concrete cover to the headed bar of at least five headed bar diameters. Placing headed bars outside of longitudinal reinforcement and close to the side of a member may result in reduced shear strength. Grade 80 [Grade 550] shear reinforcement provides the same strength and similar serviceability as Grade 60 [Grade 420] shear reinforcement. Shear crack widths increase with beam depth.Electric Power Research InstituteCommercial Metals CompanyGerdau CorporationHeaded Reinforcement Corp.LENTON® products from Pentair®MMFX Technologies CorporationNucor CorporationDayton SuperiorMidwest Concrete Material

    Drosophila Eggshell Production: Identification of New Genes and Coordination by Pxt

    Get PDF
    Drosophila ovarian follicles complete development using a spatially and temporally controlled maturation process in which they resume meiosis and secrete a multi-layered, protective eggshell before undergoing arrest and/or ovulation. Microarray analysis revealed more than 150 genes that are expressed in a stage-specific manner during the last 24 hours of follicle development. These include all 30 previously known eggshell genes, as well as 19 new candidate chorion genes and 100 other genes likely to participate in maturation. Mutations in pxt, encoding a putative Drosophila cyclooxygenase, cause many transcripts to begin expression prematurely, and are associated with eggshell defects. Somatic activity of Pxt is required, as RNAi knockdown of pxt in the follicle cells recapitulates both the temporal expression and eggshell defects. One of the temporally regulated genes, cyp18a1, which encodes a cytochromome P450 protein mediating ecdysone turnover, is downregulated in pxt mutant follicles, and cyp18a1 mutation itself alters eggshell gene expression. These studies further define the molecular program of Drosophila follicle maturation and support the idea that it is coordinated by lipid and steroid hormonal signals

    dSETDB1 and SU(VAR)3–9 Sequentially Function during Germline-Stem Cell Differentiation in Drosophila melanogaster

    Get PDF
    Germline-stem cells (GSCs) produce gametes and are thus true “immortal stem cells”. In Drosophila ovaries, GSCs divide asymmetrically to produce daughter GSCs and cystoblasts, and the latter differentiate into germline cysts. Here we show that the histone-lysine methyltransferase dSETDB1, located in pericentric heterochromatin, catalyzes H3-K9 trimethylation in GSCs and their immediate descendants. As germline cysts differentiate into egg chambers, the dSETDB1 function is gradually taken over by another H3-K9-specific methyltransferase, SU(VAR)3–9. Loss-of-function mutations in dsetdb1 or Su(var)3–9 abolish both H3K9me3 and heterochromatin protein-1 (HP1) signals from the anterior germarium and the developing egg chambers, respectively, and cause localization of H3K9me3 away from DNA-dense regions in most posterior germarium cells. These results indicate that dSETDB1 and SU(VAR)3–9 act together with distinct roles during oogenesis, with dsetdb1 being of particular importance due to its GSC-specific function and more severe mutant phenotype

    Coordination of microtubule and microfilament dynamics by Drosophila Rho1, Spire, and Cappuccino

    Get PDF
    The actin nucleation factors Spire and Cappuccino regulate the onset of ooplasmic streaming in Drosophila1-5. Although this streaming event is microtubule-based, actin assembly is required for its timing. It is not understood how the interaction of microtubules and microfilaments is mediated in this context. Here we demonstrate that Cappuccino and Spire have microtubule and microfilament crosslinking activity. The spire locus encodes several distinct protein isoforms (SpireA, SpireC, and SpireD). SpireD was recently shown to nucleate actin, but the activity of the other isoforms has not been addressed. We find that SpireD does not have crosslinking activity, while SpireC is a potent crosslinker. We show that SpireD binds to Cappuccino and inhibits Factin/ microtubule crosslinking, and activated Rho1 abolishes this inhibition, establishing a mechanistic basis for the regulation of Capu and Spire activity. We propose that Rho1, cappuccino and spire are elements of a conserved developmental cassette that is capable of directly mediating crosstalk between microtubules and microfilaments

    Prisoners co-infected with tuberculosis and HIV: a systematic review.

    Get PDF
    INTRODUCTION: Almost from the beginning of the HIV epidemic in 1981, an association with tuberculosis (TB) was recognized. This association between HIV and TB co-infection has been particularly evident amongst prisoners. However, despite this, few studies of TB in prisons have stratified results by HIV status. Given the high prevalence of HIV-positive persons and TB-infected persons in prisons and the documented risk of TB in those infected with HIV, it is of interest to determine how co-infection varies amongst prison populations worldwide. For this reason we have undertaken a systematic review of studies of co-infected prisoners to determine the incidence and/or prevalence of HIV/TB co-infection in prisons, as well as outcomes in this group, measured as treatment success or death. METHODS: A literature search was undertaken using the online databases PubMed, Embase, IBSS, Scopus, Web of Science, Global Health and CINAHL Plus. No restrictions were set on language or publication date for article retrieval, with articles included if indexed up to 18 October 2015. A total of 1975 non-duplicate papers were identified. For treatment and outcome data all eligible papers were appraised for inclusion; for incidence/prevalence estimates papers published prior to 2000 were excluded from full text review. After full text appraisal, 46 papers were selected for inclusion in the review, 41 for incidence/prevalence estimates and nine for outcomes data, with four papers providing evidence for both outcomes and prevalence/incidence. RESULTS: Very few studies estimated the incidence of TB in HIV positive prisoners, with most simply reporting prevalence of co-infection. Co-infection is rarely explicitly measured, with studies simply reporting HIV status in prisoners with TB, or a cross-sectional survey of TB prevalence amongst prisoners with HIV. Estimates of co-infection prevalence ranged from 2.4 to 73.1% and relative risks for one, given the other, ranged from 2.0 to 10.75, although some studies reported no significant association between HIV and TB. Few studies provided a comparison with the risk of co-infection in the general population. CONCLUSIONS: Prisoners infected with HIV are at high risk of developing TB. However, the magnitude of risk varies between different prisons and countries. There is little evidence on treatment outcomes in co-infected prisoners, and the existing evidence is conflicting in regards to HIV status influence on prisoner treatment outcomes.PROSPERO Number: CRD42016034068

    Intron retention in the Drosophila melanogaster Rieske iron sulphur protein gene generated a new protein

    Get PDF
    Genomes can encode a variety of proteins with unrelated architectures and activities. It is known that protein-coding genes of de novo origin have significantly contributed to this diversity. However, the molecular mechanisms and evolutionary processes behind these originations are still poorly understood. Here we show that the last 102 codons of a novel gene, Noble, assembled directly from non-coding DNA following an intronic deletion that induced alternative intron retention at the Drosophila melanogaster Rieske Iron Sulphur Protein (RFeSP) locus. A systematic analysis of the evolutionary processes behind the origin of Noble showed that its emergence was strongly biased by natural selection on and around the RFeSP locus. Noble mRNA is shown to encode a bona fide protein that lacks an iron sulphur domain and localizes to mitochondria. Together, these results demonstrate the generation of a novel protein at a naturally selected site

    An Evolutionarily Conserved Arginine Is Essential for Tre1 G Protein-Coupled Receptor Function During Germ Cell Migration in Drosophila melanogaster

    Get PDF
    BACKGROUND: G protein-coupled receptors (GPCRs) play central roles in mediating cellular responses to environmental signals leading to changes in cell physiology and behaviors, including cell migration. Numerous clinical pathologies including metastasis, an invasive form of cell migration, have been linked to abnormal GPCR signaling. While the structures of some GPCRs have been defined, the in vivo roles of conserved amino acid residues and their relationships to receptor function are not fully understood. Trapped in endoderm 1 (Tre1) is an orphan receptor of the rhodopsin class that is necessary for primordial germ cell migration in Drosophila melanogaster embryos. In this study, we employ molecular genetic approaches to identify residues in Tre1 that are critical to its functions in germ cell migration. METHODOLOGY/PRINCIPAL FINDINGS: First, we show that the previously reported scattershot mutation is an allele of tre1. The scattershot allele results in an in-frame deletion of 8 amino acids at the junction of the third transmembrane domain and the second intracellular loop of Tre1 that dramatically impairs the function of this GPCR in germ cell migration. To further refine the molecular basis for this phenotype, we assayed the effects of single amino acid substitutions in transgenic animals and determined that the arginine within the evolutionarily conserved E/N/DRY motif is critical for receptor function in mediating germ cell migration within an intact developing embryo. CONCLUSIONS/SIGNIFICANCE: These structure-function studies of GPCR signaling in native contexts will inform future studies into the basic biology of this large and clinically important family of receptors

    Drosophila Melanogaster as a Model System for Studies of Islet Amyloid Polypeptide Aggregation

    Get PDF
    Background: Recent research supports that aggregation of islet amyloid polypeptide (IAPP) leads to cell death and this makes islet amyloid a plausible cause for the reduction of beta cell mass, demonstrated in patients with type 2 diabetes. IAPP is produced by the beta cells as a prohormone, and proIAPP is processed into IAPP by the prohormone convertases PC1/3 and PC2 in the secretory granules. Little is known about the pathogenesis for islet amyloid and which intracellular mechanisms are involved in amyloidogenesis and induction of cell death. Methodology/Principal Findings: We have established expression of human proIAPP (hproIAPP), human IAPP (hIAPP) and the non-amyloidogenic mouse IAPP (mIAPP) in Drosophila melanogaster, and compared survival of flies with the expression driven to different cell populations. Only flies expressing hproIAPP in neurons driven by the Gal4 driver elavC(155,Gal4) showed a reduction in lifespan whereas neither expression of hIAPP or mIAPP influenced survival. Both hIAPP and hproIAPP expression caused formation of aggregates in CNS and fat body region, and these aggregates were both stained by the dyes Congo red and pFTAA, both known to detect amyloid. Also, the morphology of the highly organized protein granules that developed in the fat body of the head in hIAPP and hproIAPP expressing flies was characterized, and determined to consist of 15.8 nm thick pentagonal rod-like structures. Conclusions/Significance: These findings point to a potential for Drosophila melanogaster to serve as a model system for studies of hproIAPP and hIAPP expression with subsequent aggregation and developed pathology.Original Publication: Sebastian Schultz, Peter Nilsson and Gunilla Torstensdotter Westermark, Drosophila Melanogaster as a Model System for Studies of Islet Amyloid Polypeptide Aggregation, 2011, PLoS ONE, (6), 6. http://dx.doi.org/10.1371/journal.pone.0020221 Copyright: Public Library of Science (PLoS) http://www.plos.org/</p

    Drosophila Lipophorin Receptors Mediate the Uptake of Neutral Lipids in Oocytes and Imaginal Disc Cells by an Endocytosis-Independent Mechanism

    Get PDF
    Lipids are constantly shuttled through the body to redistribute energy and metabolites between sites of absorption, storage, and catabolism in a complex homeostatic equilibrium. In Drosophila, lipids are transported through the hemolymph in the form of lipoprotein particles, known as lipophorins. The mechanisms by which cells interact with circulating lipophorins and acquire their lipidic cargo are poorly understood. We have found that lipophorin receptor 1 and 2 (lpr1 and lpr2), two partially redundant genes belonging to the Low Density Lipoprotein Receptor (LDLR) family, are essential for the efficient uptake and accumulation of neutral lipids by oocytes and cells of the imaginal discs. Females lacking the lpr2 gene lay eggs with low lipid content and have reduced fertility, revealing a central role for lpr2 in mediating Drosophila vitellogenesis. lpr1 and lpr2 are transcribed into multiple isoforms. Interestingly, only a subset of these isoforms containing a particular LDLR type A module mediate neutral lipid uptake. Expression of these isoforms induces the extracellular stabilization of lipophorins. Furthermore, our data indicate that endocytosis of the lipophorin receptors is not required to mediate the uptake of neutral lipids. These findings suggest a model where lipophorin receptors promote the extracellular lipolysis of lipophorins. This model is reminiscent of the lipolytic processing of triglyceride-rich lipoproteins that occurs at the mammalian capillary endothelium, suggesting an ancient role for LDLR–like proteins in this process
    corecore