30 research outputs found

    Sensitivity of IFN-Îł Release Assay to Detect Latent Tuberculosis Infection Is Retained in HIV-Infected Patients but Dependent on HIV/AIDS Progression

    Get PDF
    BACKGROUND: Detection and treatment of latent TB infection (LTBI) in HIV infected individuals is strongly recommended to decrease morbidity and mortality in countries with high levels of HIV. OBJECTIVE: To assess the validity of a newly developed in-house ELISPOT interferon-gamma release assay (IGRA) for the detection of LTBI amongst HIV infected individuals, in comparison with the Tuberculin Skin Test (TST). METHODOLOGY/PRINCIPAL FINDINGS: ESAT6/CFP10 (EC) ELISPOT assays were performed, together with a TST, in 285 HIV infected individuals recruited in HIV clinics in Dakar, Senegal, who had no signs of active TB at time of enrolment. Thirty eight of the subjects (13.3%) failed to respond to PHA stimulation and were excluded from the analysis. In the 247 remaining patients, response to PHA did not vary according to CD4 cell count categories (p = 0.51). EC ELISPOT was positive in 125 (50.6%) subjects, while 53 (21.5%) had a positive TST. Concordance between EC ELISPOT and TST was observed in 151 patients (61.1%) (kappa = 0.23). The proportion of subjects with a positive response to the EC ELISPOT assay decreased with declining CD4 counts (p trend = 0.001), but were consistently higher than the proportion of TST responders. In multivariate analysis, the risk of being EC-ELISPOT positive in HIV infected individuals was associated with age, CD4 count and HIV-1 strain. CONCLUSION: Our study indicates that IGRAs using M. tuberculosis specific antigens are likely to retain their validity for the diagnosis of LTBI among HIV positive individuals, but may be impaired by T-cell anergy in severely immuno-suppressed individuals

    Genome wide linkage study, using a 250K SNP map, of Plasmodium falciparum infection and mild malaria attack in a Senegalese population

    Get PDF
    Multiple factors are involved in the variability of host's response to P. falciparum infection, like the intensity and seasonality of malaria transmission, the virulence of parasite and host characteristics like age or genetic make-up. Although admitted nowadays, the involvement of host genetic factors remains unclear. Discordant results exist, even concerning the best-known malaria resistance genes that determine the structure or function of red blood cells. Here we report on a genomewide linkage and association study for P. falciparum infection intensity and mild malaria attack among a Senegalese population of children and young adults from 2 to 18 years old. A high density single nucleotide polymorphisms (SNP) genome scan (Affimetrix GeneChip Human Mapping 250K-nsp) was performed for 626 individuals: i.e. 249 parents and 377 children out of the 504 ones included in the follow-up. The population belongs to a unique ethnic group and was closely followed-up during 3 years. Genome-wide linkage analyses were performed on four clinical and parasitological phenotypes and association analyses using the family based association tests (FBAT) method were carried out in regions previously linked to malaria phenotypes in literature and in the regions for which we identified a linkage peak. Analyses revealed three strongly suggestive evidences for linkage: between mild malaria attack and both the 6p25.1 and the 12q22 regions (empirical p-value = 5 x 10(-5) and 96 x 10(-5) respectively), and between the 20p11q11 region and the prevalence of parasite density in asymptomatic children (empirical p-value = 1.5 x 10(-4)). Family based association analysis pointed out one significant association between the intensity of plasmodial infection and a polymorphism located in ARHGAP26 gene in the 5q31-q33 region (p-value = 3.7 x 10(-5)). This study identified three candidate regions, two of them containing genes that could point out new pathways implicated in the response to malaria infection. Furthermore, we detected one gene associated with malaria infection in the 5q31-q33 region

    Phylogeny of seven Bulinus species originating from endemic areas in three African countries, in relation to the human blood fluke Schistosoma haematobium.

    No full text
    International audienceBackgroundSnails species belonging to the genus Bulinus (Planorbidae) serve as intermediate host for flukes belonging to the genus Schistosoma (Digenea, Platyhelminthes). Despite its importance in the transmission of these parasites, the evolutionary history of this genus is still obscure. In the present study, we used the partial mitochondrial cytochrome oxidase subunit I (cox1) gene, and the nuclear ribosomal ITS, 18S and 28S genes to investigate the haplotype diversity and phylogeny of seven Bulinus species originating from three endemic countries in Africa (Cameroon, Senegal and Egypt).ResultsThe cox1 region showed much more variation than the ribosomal markers within Bulinus sequences. High levels of genetic diversity were detected at all loci in the seven studied species, with clear segregation between individuals and appearance of different haplotypes, even within same species from the same locality. Sequences clustered into two lineages; (A) groups Bulinus truncatus, B. tropicus, B. globosus and B. umbilicatus; while (B) groups B. forskalii, B. senegalensis and B. camerunensis. Interesting patterns emerge regarding schistosome susceptibility: Bulinus species with lower genetic diversity are predicted to have higher infection prevalence than those with greater diversity in host susceptibility.ConclusionThe results reported in this study are very important since a detailed understanding of the population genetic structure of Bulinus is essential to understand the epidemiology of many schistosome parasites

    18S-sequences

    No full text
    This file covers all the 18S sequences for six Bulinus species (B. truncatus, B. tropicus, B. globosus, B. umbilicatus, B. senegalensis, and B. forskalii) collected from three African counties (Cameroon, Senegal and Egypt). They were sequenced using an ABI Prism BigDye® Terminator v1.1 Cycle Sequencing Ready Reaction Kit (PE, Applied Biosystems), and were aligned using ClustalX in Mega6

    Data from: Phylogeny of seven Bulinus species originating from endemic areas in three African countries, in relation to the human blood fluke Schistosoma haematobium

    No full text
    Background: Snails species belonging to the genus Bulinus (Planorbidae) serve as intermediate host for flukes belonging to the genus Schistosoma (Digenea, Platyhelminthes). Despite its importance in the transmission of these parasites, the evolutionary history of this genus is still obscure. In the present study, we used the partial mitochondrial cytochrome oxidase subunit I (cox1) gene, and the nuclear ribosomal ITS, 18S and 28S genes to investigate the haplotype diversity and phylogeny of seven Bulinus species originating from three endemic countries in Africa (Cameroon, Senegal and Egypt). Results: The cox1 region showed much more variation than the ribosomal markers within Bulinus sequences. High levels of genetic diversity were detected at all loci in the seven studied species, with clear segregation between individuals and appearance of different haplotypes, even within same species from the same locality. Sequences clustered into two lineages; (A) groups Bulinus truncatus, B. tropicus, B. globosus and B. umbilicatus; while (B) groups B. forskalii, B. senegalensis and B. camerunensis. Interesting patterns emerge regarding schistosome susceptibility: Bulinus species with lower genetic diversity are predicted to have higher infection prevalence than those with greater diversity in host susceptibility. Conclusion: The results reported in this study are very important since a detailed understanding of the population genetic structure of Bulinus is essential to understand the epidemiology of many schistosome parasites

    Cox1 Asmit region sequences

    No full text
    This file covers all the cox1 (Asmit region) haplotypes for seven Bulinus species (B. truncatus, B. tropicus, B. globosus, B. umbilicatus, B. senegalensis, B. camerunensis and B. forskalii) collected from three African counties (Cameroon, Senegal and Egypt). They were sequenced using an ABI Prism BigDye® Terminator v1.1 Cycle Sequencing Ready Reaction Kit (PE, Applied Biosystems), and were aligned using ClustalX in Mega6

    28S-sequences

    No full text
    This file covers all the 28S sequences for six Bulinus species (B. truncatus, B. tropicus, B. globosus, B. umbilicatus, B. senegalensis, and B. forskalii) collected from three African counties (Cameroon, Senegal and Egypt). They were sequenced using an ABI Prism BigDye® Terminator v1.1 Cycle Sequencing Ready Reaction Kit (PE, Applied Biosystems), and were aligned using ClustalX in Mega6
    corecore