949 research outputs found

    An image-based model of brain volume biomarker changes in Huntington's disease

    Get PDF
    Objective: Determining the sequence in which Huntington's disease biomarkers become abnormal can provide important insights into the disease progression and a quantitative tool for patient stratification. Here, we construct and present a uniquely fine-grained model of temporal progression of Huntington's disease from premanifest through to manifest stages. Methods: We employ a probabilistic event-based model to determine the sequence of appearance of atrophy in brain volumes, learned from structural MRI in the Track-HD study, as well as to estimate the uncertainty in the ordering. We use longitudinal and phenotypic data to demonstrate the utility of the patient staging system that the resulting model provides. Results: The model recovers the following order of detectable changes in brain region volumes: putamen, caudate, pallidum, insula white matter, nonventricular cerebrospinal fluid, amygdala, optic chiasm, third ventricle, posterior insula, and basal forebrain. This ordering is mostly preserved even under cross-validation of the uncertainty in the event sequence. Longitudinal analysis performed using 6 years of follow-up data from baseline confirms efficacy of the model, as subjects consistently move to later stages with time, and significant correlations are observed between the estimated stages and nonimaging phenotypic markers. Interpretation: We used a data-driven method to provide new insight into Huntington's disease progression as well as new power to stage and predict conversion. Our results highlight the potential of disease progression models, such as the event-based model, to provide new insight into Huntington's disease progression and to support fine-grained patient stratification for future precision medicine in Huntington's disease

    Distributions of charged massive scalars and fermions from evaporating higher-dimensional black holes

    Full text link
    A detailed numerical analysis is performed to obtain the Hawking spectrum for charged, massive brane scalars and fermions on the approximate background of a brane charged rotating higher-dimensional black hole constructed in arXiv:0907.5107. We formulate the problem in terms of a "spinor-like" first order system of differential wave equations not only for fermions, but for scalars as well and integrate it numerically. Flux spectra are presented for non-zero mass, charge and rotation, confirming and extending previous results based on analytic approximations. In particular we describe an inverted charge splitting at low energies, which is not present in four or five dimensions and increases with the number of extra dimensions. This provides another signature of the evaporation of higher-dimensional black holes in TeV scale gravity scenarios.Comment: 19 pages, 6 figures, minor typos corrected, 1 page added with a discussion on higher spins, added reference

    Navigating Hurdles:A Review of the Obstacles Facing the Development of the Pandemic Treaty

    Get PDF
    INTRODUCTION: The emergence of the COVID-19 pandemic has served as a call for enhanced global cooperation and a more robust pandemic preparedness and response framework. As a result of this pressing demand, dialogues were initiated to establish a pandemic treaty designed to foster a synchronized global strategy for addressing forthcoming health emergencies. In this review, we discussed the main obstacles to this treaty.RESULTS: Among several challenges facing the pandemic treaty, we highlighted (1) global cooperation and political will, (2) equity in access to resources and treatments, (3) sustainable financing, (4) compliance and enforcement mechanisms, (5) sovereignty concerns, and (6) data sharing and transparency.CONCLUSION: Navigating the hurdles facing the development of the pandemic treaty requires concerted efforts, diplomatic finesse, and a shared commitment to global solidarity. Addressing challenges in global cooperation, equitable access, transparency, compliance, financing, and sovereignty is essential for forging a comprehensive and effective framework for pandemic preparedness and response on the global stage.</p

    Essential role of the N-terminal region of TFII-I in viability and behavior

    Get PDF
    <p>Abstract</p> <p>Background</p> <p><it>GTF2I </it>codes for a general intrinsic transcription factor and calcium channel regulator TFII-I, with high and ubiquitous expression, and a strong candidate for involvement in the morphological and neuro-developmental anomalies of the Williams-Beuren syndrome (WBS). WBS is a genetic disorder due to a recurring deletion of about 1,55-1,83 Mb containing 25-28 genes in chromosome band 7q11.23 including <it>GTF2I</it>. Completed homozygous loss of either the <it>Gtf2i </it>or <it>Gtf2ird1 </it>function in mice provided additional evidence for the involvement of both genes in the craniofacial and cognitive phenotype. Unfortunately nothing is now about the behavioral characterization of heterozygous mice.</p> <p>Methods</p> <p>By gene targeting we have generated a mutant mice with a deletion of the first 140 amino-acids of TFII-I. mRNA and protein expression analysis were used to document the effect of the study deletion. We performed behavioral characterization of heterozygous mutant mice to document <it>in vivo </it>implications of TFII-I in the cognitive profile of WBS patients.</p> <p>Results</p> <p>Homozygous and heterozygous mutant mice exhibit craniofacial alterations, most clearly represented in homozygous condition. Behavioral test demonstrate that heterozygous mutant mice exhibit some neurobehavioral alterations and hyperacusis or odynacusis that could be associated with specific features of WBS phenotype. Homozygous mutant mice present highly compromised embryonic viability and fertility. Regarding cellular model, we documented a retarded growth in heterozygous MEFs respect to homozygous or wild-type MEFs.</p> <p>Conclusion</p> <p>Our data confirm that, although additive effects of haploinsufficiency at several genes may contribute to the full craniofacial or neurocognitive features of WBS, correct expression of <it>GTF2I </it>is one of the main players. In addition, these findings show that the deletion of the fist 140 amino-acids of TFII-I altered it correct function leading to a clear phenotype, at both levels, at the cellular model and at the <it>in vivo </it>model.</p

    Automatic Detection of Malignant Masses in Digital Mammograms Based on a MCET-HHO Approach

    Get PDF
    Digital image processing techniques have become an important process within medical images. These techniques allow the improvement of the images in order to facilitate their interpretation for specialists. Within these are the segmentation methods, which help to divide the images by regions based on different approaches, in order to identify details that may be complex to distinguish initially. In this work, it is proposed the implementation of a multilevel threshold segmentation technique applied to mammography images, based on the Harris Hawks Optimization (HHO) algorithm, in order to identify regions of interest (ROIs) that contain malignant masses. The method of minimum cross entropy thresholding (MCET) is used to select the optimal threshold values for the segmentation. For the development of this work, four mammography images were used (all with presence of a malignant tumor), in their two views, craniocaudal (CC) and mediolateral oblique (MLO), obtained from the Digital Database for Screening Mammography (DDSM). Finally, the ROIs calculated were compared with the original ROIs of the database through a series of metrics, to evaluate the behavior of the algorithm. According to the results obtained, where it is shown that the agreement between the original ROIs and the calculated ROIs is significantly high, it is possible to conclude that the proposal of the MCET-HHO algorithm allows the automatic identification of ROIs containing malignant tumors in mammography images with significant accuracy.Digital image processing techniques have become an important process within medical images. These techniques allow the improvement of the images in order to facilitate their interpretation for specialists. Within these are the segmentation methods, which help to divide the images by regions based on different approaches, in order to identify details that may be complex to distinguish initially. In this work, it is proposed the implementation of a multilevel threshold segmentation technique applied to mammography images, based on the Harris Hawks Optimization (HHO) algorithm, in order to identify regions of interest (ROIs) that contain malignant masses. The method of minimum cross entropy thresholding (MCET) is used to select the optimal threshold values for the segmentation. For the development of this work, four mammography images were used (all with presence of a malignant tumor), in their two views, craniocaudal (CC) and mediolateral oblique (MLO), obtained from the Digital Database for Screening Mammography (DDSM). Finally, the ROIs calculated were compared with the original ROIs of the database through a series of metrics, to evaluate the behavior of the algorithm. According to the results obtained, where it is shown that the agreement between the original ROIs and the calculated ROIs is significantly high, it is possible to conclude that the proposal of the MCET-HHO algorithm allows the automatic identification of ROIs containing malignant tumors in mammography images with significant accuracy

    Candida bracarensis: Evaluation of virulence factors and its tolerance to Amphotericin B and Fluconazole

    Get PDF
    Candida bracarensis is an uncommon Candida species found during an epidemiological study of candidiasis performed in Braga, Portugal. Initially, it was identified as C. glabrata, but recently detailed analyses pointed out their differences. So, little information is still available about C. bracarensis virulence factors and antifungal susceptibilities. Therefore, the main goal of this work is to evaluate the ability of C. bracarensis to form biofilms, to produce hydrolytic enzymes (proteases, phospholipases and hemolysins), as well as its susceptibility to amphotericin B and fluconazole. It was shown, for the first time, that all C. bracarensis strains were able to form biofilms and display proteinase and hemolytic activities. Moreover, although planktonic cells presented antifungal susceptibility, amphotericin B and fluconazole were unable to inhibit biofilm formation and eradicate pre-formed biofilms. Due to the propensity of C. bracarensis to display antifungal resistance and virulence attributes, the control of these emerging pathogens is recommended.This work was supported by the projects PTDC/SAU-MIC/119069/2010, PEst-OE/EQB/LA0023/2013, from Fundação para a Ciência e Tecnologia (FCT), Portugal and ‘‘BioHealth—Biotechnology and Bioengineering approaches to improve health quality’’, Ref. NORTE-07-0124FEDER-000027, co-funded by the Programa Operacional Regional do Norte (ON.2 – O Novo Norte), QREN, FEDER. The authors also acknowledge the project ‘‘Consolidating Research Expertise and Resources on Cellular and Molecular Biotechnology at CEB/IBB’’, Ref. FCOMP-01-0124-FEDER027462

    Phytotoxicity of alkaloids, coumarins and flavonoids isolated from 11 species belonging to the Rutaceae and Meliaceae families

    Get PDF
    Meliaceae and Rutaceae families are known for the high diversity of their secondary metabolites, which include many groups that represent a rich source of structural diversity, and are good candidates as sources of allelochemicals that could be useful in agriculture. In the work described here the bioactivity profiles were evaluated for 3 alkaloids (1–3), 12 coumarins (4–15), 2 phenylpropanoic acid derivatives (16 and 17) and 14 flavonoids (18–31) from 11 species belonging to the Meliaceae and Rutaceae families. All compounds were tested in the wheat coleoptile bioassay and those that showed the highest activities were tested on the STS (Standard Target Species) Lepidium sativum (cress), Lactuca sativa (lettuce), Lycopersicon esculentum (tomato), and Allium cepa (onion). Most of the isolated compounds showed phytotoxic activity and graveoline (3), psoralen (8), and flavone (18) were the most active, with bioactivity levels similar to that of the commercial herbicide Logran1. The results indicate that these compounds could be involved as semiochemicals in the allelopathic interactions of these plant species
    • …
    corecore