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Abstract

Objective: Determining the sequence in which Huntington’s disease biomarkers

become abnormal can provide important insights into the disease progression

and a quantitative tool for patient stratification. Here, we construct and present

a uniquely fine-grained model of temporal progression of Huntington’s disease

from premanifest through to manifest stages. Methods: We employ a proba-

bilistic event-based model to determine the sequence of appearance of atrophy

in brain volumes, learned from structural MRI in the Track-HD study, as well

as to estimate the uncertainty in the ordering. We use longitudinal and pheno-

typic data to demonstrate the utility of the patient staging system that the

resulting model provides. Results: The model recovers the following order of

detectable changes in brain region volumes: putamen, caudate, pallidum, insula

white matter, nonventricular cerebrospinal fluid, amygdala, optic chiasm, third

ventricle, posterior insula, and basal forebrain. This ordering is mostly pre-

served even under cross-validation of the uncertainty in the event sequence.

Longitudinal analysis performed using 6 years of follow-up data from baseline

confirms efficacy of the model, as subjects consistently move to later stages with

time, and significant correlations are observed between the estimated stages and

nonimaging phenotypic markers. Interpretation: We used a data-driven

method to provide new insight into Huntington’s disease progression as well as

new power to stage and predict conversion. Our results highlight the potential

of disease progression models, such as the event-based model, to provide new

insight into Huntington’s disease progression and to support fine-grained

patient stratification for future precision medicine in Huntington’s disease.

Introduction

Huntington’s disease (HD) is a monogenic, autosomal-

dominant neurological disorder characterized by motor,

cognitive, and behavioral symptoms that have a devastat-

ing effect on the life of the person affected.1 Symptoms

typically begin in early adult life and the disease is usually

fatal, with a median survival rate of 18 years after motor

onset.2 Despite the disease being identifiable by a single

genetic marker – an expanded cytosine-adenine-guanine

(CAG) repeat in the huntingtin gene3 – an effective dis-

ease-modifying treatment has yet to be found. This is

complicated by the difficulty in assigning gene-positive

subjects to suitable groups when conducting drug trials;

within any group there may be a range of physiological and

biophysical factors that cause a very different response to

treatment. Furthermore, HD displays an extended preman-

ifest period4,5 during which therapeutic intervention is

likely to be most effective. Identifying a suitable biomarker

that captures disease stage may potentially aid trial
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efficiency when included in a stratified statistical analysis.

While there are a range of available biomarkers from differ-

ent sources – such as functional, imaging, and genetic data

– that give some information on disease stage, none is

accurate enough alone to be useful for stratification. The

challenge therefore is to provide methods that can integrate

information from multiple biomarkers for reliable stratifi-

cation of homogeneous subgroups.

The emerging field of disease progression modeling, in

which data-driven statistical models are designed to both

describe long-term progression of the disease in terms of

a set of biomarkers and to categories the stages along that

progression of individual patients, provides a potential

solution to this challenge; a brief overview is given here,

for a more comprehensive review see.6 Hypothetical mod-

els such as those originally proposed by7 describe progres-

sion in terms of key biomarker trajectories, typically

defined as the monotonic transition from a normal to

abnormal state in an order characteristic of the disease,

where the order is hypothesized on aggregated evidence

from the literature. As such, models of this type represent

a qualitative, high-level view of the disease that do not

make direct use of subject data, thus limiting their staging

and prediction capabilities in practice.

The event-based model (EBM;8) is a probabilistic

method that infers the order in which biomarkers become

abnormal directly from cross-sectional subject data. Its key

strengths are (1) it requires no a priori staging, (2) it

requires no a priori cut points (i.e., imposed thresholds) to

define normal from abnormal, and (3) its simplicity: it can

be completely specified using only modestly sized cross-sec-

tional data (although it can also exploit longitudinal data).

Strengths (1) and (2), in particular, set the EBM apart from

more traditional region-based analyses in HD, for exam-

ple,9 which need to assign a stage to each subject a priori,

typically using ranges (cut-points) of an independent mar-

ker such as a cognitive test score, to elicit any temporal

information on the order in which volumes become detec-

tably abnormal. That limits model resolution and integrity,

as the a priori staging is imperfect. The EBM provides a

simple and robust tool for investigating disease patterns

and estimating patient stages in a fully data-driven manner.

In familial and sporadic Alzheimer’s disease,8,10 as well as

frontotemporal dementia,11 EBMs have provided staging

systems with predictive power at least as good as pattern

matching techniques, for example.12,13 In contrast to pat-

tern matching, however, the EBMs provide uniquely fine-

grained temporal patterns of atrophy, enhancing disease

understanding, and a well-defined staging system for strati-

fication. Furthermore, we highlight that the EBM advances

on more traditional region-based analyses,9 as it provides

temporal information on the order in which volumes

become detectably abnormal.

Here, we construct an EBM from the extensive and

high-quality TRACK-HD dataset (Table 1).5,14 This pro-

vides a uniquely fine-grained data-driven sequence of the

regional appearance of brain volume abnormalities in HD

and an image-based staging system. Although the original

EBM methods paper8 shows a HD model, it is for

demonstration purposes only, using a small single-centre

study, and the work makes no evaluation of the potential

for staging and prediction. The much larger dataset we

use here allows us to specify an EBM with a well-defined

ordering of events and demonstrate that it is robust

under cross-validation. Interestingly, our approach reveals

that the spread of atrophy in early-stage HD is not lim-

ited to the basal ganglia and white matter (compared to

prodromal observations, e.g., 15), but that changes in

these volumes occur first. We show the novel staging sys-

tem, the resulting EBM provides, gives strong prediction

of conversion using only imaging data. We also show

that the staging system can separate subjects within the

premanifest cohort according to predicted onset, which is

independently prescribed by a disease burden score. We

confirm the longitudinal efficacy of the model by show-

ing that patients consistently move to later stages with

time, using additional data from the TrackOn-HD

study16 to provide data 6 years from baseline. We further

validate and contextualize the EBM by showing signifi-

cant correlations between its staging predictions and

commonly used phenotypic markers, specifically: total

motor score, symbol digit modalities test, and Stroop

word reading test. As such, our model provides new

insight into the spread of pathology over the brain in

HD and new utility in patient stratification for future

precision medicine.

Table 1. Baseline demographic data for the TRACK-HD cohort.

Demographics Healthy controls Premanifest Manifest

N 119 120 118

Gender M/F 53/66 54/66 54/64

Age (years,

mean � SD)

46.3 � 10.2 40.8 � 8.8 48.5 � 9.9

Education (ISCED

rating, mean � SD)

4.0 � 1.3 3.94 � 1.2 3.65 � 1.3

CAG (repeats,

mean � SD)

N/A 43.1 � 2.4 43.7 � 3.0

Total intracranial

volume (mL,

mean � SD)

1392 � 136 1408 � 151 1362 � 130

The TRACK-ON cohort used in this study is a subset of 91 of the pre-

manifest subjects at baseline. No significant differences in demo-

graphic data were found between the TRACK-ON subset and TRACK-

HD, except the gender ratio which is approximately 0.7 in the former

and 0.8 in the latter.
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Materials and Methods

Subjects

The TRACK-HD dataset was used in all following analy-

ses.5,14 This study uses a total of 357 subjects with clinical

diagnoses at baseline and quality-controlled imaging data –
119 healthy control (HC), 120 premanifest (pre-HD), and

118 manifest (HD) – from four different sites: Leiden (NL),

London (UK), Paris (FR), and Vancouver (CA) (Table 1).

For detailed demographic information see Table 1. Longi-

tudinal data for both the pre-HD and HD cohorts are

available for three follow-up years in the TRACK-HD

study. Additional data 6 years from baseline are supplied

by the TrackOn-HD study, which contains 69 of the HC

and 91 of the pre-HD subjects present at baseline in

TRACK-HD. The TrackOn-HD study followed the pre-

HD and control cohorts with the aim of understanding

the compensatory mechanisms that allow maintenance of

function in the presence of structural loss in the brain.

The longitudinal data are reserved for validation purposes

as the EBM requires only cross-sectional data. Both imag-

ing and phenotypic data are available for most subjects;

here, we focus on the former to construct the EBM and

use the latter for validation and to relate the EBM to clini-

cal measures.

Magnetic resonance imaging

Postprocessing of multisite 3T T1-weighted MRI was per-

formed to acquire cross-sectional regional measurements

of brain volumes. The Geodesic Information Flows (GIF)

software framework17 was used to segment and parcellate

cortical and subcortical volumes. The GIF framework

provides a more robust segmentation than other state-of-

the-art methods such as Freesurfer (http://surfer.nmr.

mgh.harvard.edu/), which has been shown to produce

noisy segmentations in some regions, for example, the

putamen.18,19

Biomarker selection

Herein, we use the term biomarker to refer to image-

based regional brain volumes that differentiate between

healthy controls (HC) and HD subjects. To control for

covariates, all cortical and subcortical volumes were cor-

rected for age, research site, and total intracranial volume

(TIV) using linear regression. To select covariate-cor-

rected volumes in a data-driven manner, a group-wise

analysis was performed between the healthy control (HC)

and HD cohorts. This approach was partly motivated by

aiming to make no a priori decision on the relevance of a

given volume, and to provide the EBM with well-defined

normal and abnormal distributions. Significant and

strongly separated volumes were defined as having

P-value P < 0.001 (corrected for multiple comparisons)

and effect size |t| > 8.0, under a two-tailed t-test. This

identified the following brain volumes (here, where rele-

vant, ‘l’ corresponds to the left volume and ‘r’ corre-

sponds to the right volume): putamen (l-r), caudate (l-r),

amygdala (l-r), pallidum (l-r), CSF, insula white matter

(l-r), third ventricle, optic chiasm, posterior insula (l-r),

and basal forebrain (l-r). Bilateral volumes were only

selected if both left and right volumes passed the require-

ments. This excluded the occipital pole and occipital

gyrus, in which the right but not the left volumes passed

the effect size requirement. We note that while it is not

safe to assume that HD affects the brain symmetrically

(see, e.g., 20), these volumes also failed the effect size cri-

terion after their bilateral volumes were combined. Fur-

thermore, the exclusion of any particular volume does

not bias the overall biomarker ordering recovered by the

EBM; the relative positions of any of the other volumes

remain unchanged, and hence it just subtracts knowledge

of the position of that particular volume in the sequence.

On the other hand, including insensitive biomarkers (i.e.,

those that do no separate patients and controls) in the

model can cause bias and counterintuitive effects. Thus,

here we take the conservative approach of excluding any

volumes over which the whole volume (left + right) does

not sufficiently discriminate between HC and HD

subjects.

We note that each of these biomarkers shows a mea-

surable difference in brain volume between HC and HD

subject. This does not imply that the change is biologi-

cally plausible, for example, it is unlikely that the optic

chiasm is directly atrophied by the disease itself. We sim-

ply assert that as the disease progresses there is a measur-

able change in each volume, and that this change is due

to disease progression and not any of the aforementioned

covariates.

The event-based model

The EBM method8,10 models a disease process as a

sequence of events at which individual biomarkers

become abnormal, based on the assumptions of mono-

tonic and homogeneous disease progression, that is,

patients experience no remission and all follow the same

pattern. It is probabilistic by design, learning normal and

abnormal distributions of each biomarker from the data,

and requires no a priori staging or cut points. It learns

the sequence of events from either or both cross-sectional

and longitudinal datasets and, importantly for clinical tri-

als, enables the assignment of a stage to a subject using

data from a single time point.
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In brief, the EBM fits a mixture model to control and

patient data for each biomarker to obtain models for the

distribution of normal and abnormal values for each bio-

marker. These models provide the likelihoods P xijjEi
� �

and

P xijj:Ei
� �

of observing the value, xij, of biomarker i for

subject j, given that biomarker i has or has not become

abnormal, respectively. These likelihoods combine to cal-

culate the likelihood of the full dataset

X ¼ xij : i ¼ 1; . . .;Z; j ¼ 1; . . .N for a given sequence, S:

P XjSð Þ ¼
YN
j¼1

XZ
k¼0

P kð Þ
Yk
i¼1

P xijjEi
� � YZ

i¼kþ1

P xijj:Ei
� � !" #

(1)

Here, P kð Þis the prior likelihood of being at stage k,

which is assumed uniform to impose as little constraint

as possible, i runs over the number of events, Z, and j the

number of subjects, N. The estimation process then seeks

the characteristic sequence, �S, defined as the sequence that

maximizes Equation 1. We use Markov Chain Monte

Carlo (MCMC) sampling to sample from the posterior

distribution on S and identify �S, which is given by the

sample with the highest likelihood. The set of samples

further quantifies the uncertainty in the ordering; follow-

ing,8,10 we use the set of MCMC samples to construct a

positional variance diagram, which visualizes the uncer-

tainty.

Models of event distributions

The likelihood models P xijjEi
� �

and P xijj:Ei
� �

were

obtained by fitting mixture models to the observed dis-

tributions of control and patient regional volumes. We

first fit a Gaussian distribution to the set of volumes

from the HCs, which provides the model for each

P xijj:Ei
� �

. We then fit a mixture of two Gaussian distri-

butions to the set of volumes from the patients with

one component fixed to the HC model’s parameters.

The parameters of the second, fitted, component provide

the model for P xijjEi
� �

. As10 notes, estimating the two

distributions is harder in sporadic diseases where the

control and patient groups are not uniquely defined.

However, our simple approach is justified here as the

control population is exactly determined by genetic test-

ing; as such, there is approaching zero probability of a

control subject developing HD, and the distribution can

be treated separately.

Patient staging

Given a characteristic event sequence, �S, the EBM pro-

vides an intrinsic method for staging by evaluating, for

each subject j with data Xj, the stage k that maximizes the

likelihood10:

P Xjj�S; k
� � ¼ P kð Þ

Yk
i¼1

P xijjEi
� � YZ

i¼kþ1

P xijj:Ei
� �

(2)

As in Equation 1, P kð Þ is the prior likelihood of being

at stage k, which is assumed uniform (no a priori prefer-

ence for any particular stage). The stage k that maximizes

Equation 2 defines the EBM stage of subject j. Each stage

is a highly idealized combination of normal and abnormal

biomarker values, but gives a crude picture of where the

patient lies along the characteristic sequence.

Cross-validation of event sequence

As described previously, MCMC sampling gives some

insight into the uncertainty in the event ordering esti-

mated by the EBM. However, this process tends to under-

estimate the uncertainty10; cross-validation provides a

more liberal measure of the uncertainty. Here, this is per-

formed by refitting the mixture models and re-estimating

the event sequence for 100 bootstrap samples of the data.

We construct the final positional variance diagram by

averaging over the positional variance diagrams from each

iteration.

Longitudinal consistency

We assessed the predictive capabilities of the EBM under

the hypothesis that the stage increases with time, in line

with our understanding of HD as a progressive disease.

This was tested by estimating pre-HD and HD subjects’

stages at each follow-up and comparing to baseline. The

TRACK-HD dataset is comprised of baseline measure-

ments and three follow ups: 12, 24, and 36 months from

baseline. A further year of follow-up data for the pre-HD

cohort were provided by the TrackOn-HD dataset,

extending the follow ups to 72 months. The follow-up

data were processed using the same method as the base-

line data to produce the same set of biomarkers at each

time point.

Correlation with phenotypic markers

The TRACK-HD dataset includes a number of cognitive,

functional, and motor measures for each subject at base-

line and follow-up. Here, we use the Total Motor Score

(TMS),21 Symbol Digit Modalities Test (SDMT),22 Stroop

test, and scaled CAG-age-product (CAP)23 as widely used

markers of disease-driven motor, cognitive, and genetic

onset, respectively. These markers are used to validate the

staging under the hypothesis that a subject with a high
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EBM stage will have poor motor and cognitive scores.

Furthermore, given that TMS, SDMT, Stroop, and CAP

are regularly used in clinical diagnosis, correlating these

markers with EBM stage provides both an implicit time

scale for the event sequence and insight into which events

have occurred by the time of motor onset.

Results

Region-based volumetric analysis

To aid in understanding the EBM, Figure S1 shows his-

tograms of the HC and HD volume biomarker distribu-

tions and the corresponding mixture model fits. The fits

provide the parameters for the normal and abnormal like-

lihoods, P xijj:Ei
� �

and P xijjEi
� �

, respectively. Note that

the volumes are covariate corrected, and hence show HC

distributions with mean zero

As a complementary and more familiar analysis, we

also provide measurements of regional volumetric changes

and estimated thresholds of abnormality for each brain

volume biomarker (see Table S1). This aids in the inter-

pretation of abnormality for each biomarker, and facili-

tates comparison with more traditional region-based

studies. Table S1 shows the percentage change in the

mean between HC and HD distributions, after correcting

for covariates (percentage change = HD residual mean/

HC mean). To facilitate comparison with other analyses

that estimate explicit thresholds for abnormality, Table S1

also shows the percentage change in each volume with

respect to the HC mean at arbitrary thresholds, which we

define here as the point at which the volume is equally

likely to be normal or abnormal. We highlight that these

thresholds are not used by the EBM; they are provided

here just to illustrate the separation of the distributions.

The volumetric changes and estimated thresholds demon-

strate good agreement with the literature, where avail-

able.9,24,25

Event sequence

Event orders are presented in the form of a positional

variance diagram, which shows the maximum likelihood

sequence and its uncertainty. As described earlier, only

HC and manifest HD subjects were used to construct the

biomarker distribution models, but all subjects were used

to produce the final event sequences. To obtain robust fits

of the distribution models, we removed all data points

more than 5 standard deviations from the within-group

mean; in practice, this excludes a single HC subject where

the segmentation overestimated the size of several vol-

umes. Cross-sectional data from a single time point were

used, so the resulting EBM does not consider biomarkers

that require follow-up scans (e.g., atrophy rates). This

ensures that data from a single time point can be used to

stage subjects.

The brain volume biomarker positional variance dia-

gram is shown in (Fig. 1A). Specifically, the order of

changes in volume is as follows: putamen, caudate, pal-

lidum, insula white matter, nonventricular CSF, amyg-

dala, optic chiasm, third ventricle, followed by the

posterior insula, and finally the basal forebrain. The cor-

responding positional variance estimated by bootstrapping

is shown in (Fig. 1B). To aid in visualization, (Fig. 1C)

shows a graphical representation of the event sequence.

Cross-validation

Figure 1B shows the positional variance of the maximum

likelihood event sequence recalculated by bootstrapping

the data (i.e., random sampling with replacement) and

refitting the mixture models and sequence. This provides

an estimation of the effect of out-of-sample variability

and hence an overestimation of the uncertainty. The

ordering is generally well preserved, with the components

of the basal ganglia occurring first, the white matter and

CSF retaining a mid-stage position, and the posterior

insula and basal forebrain occurring last.

Staging

Subjects were assigned a stage along the maximum likeli-

hood sequence defined in (Fig. 1A) according to (Eq. 2).

The fraction of subjects at each event stage for each

cohort is shown in (Fig. 2). The HC cohort is clustered at

the early stages, with the majority at stage 0 (no event

occurred), whereas the HD cohort is clustered at the late

stages, with the majority at the final stage (all events

occurred). This demonstrates that the EBM can provide

separation between healthy and manifest subjects. The

pre-HD cohort is distributed throughout the sequence

with peaks at the first and final events, indicating that

premanifest subjects can be grouped as more “HC-like”

or more “HD-like”. We further substantiate this by divid-

ing the pre-HD cohort into two subgroups, pre-HD A

and pre-HD B, which are defined by the TRACK-HD

study according to the predicted time to onset.5 The pre-

dicted time to onset is based on an age- and CAG-depen-

dent empirical relation,26 with pre-HD A subjects having

predicted onset greater than 10.8 years and pre-HD B

subjects less than 10.8 years. Accordingly, the EBM

assigns most (77%) pre-HD A subjects to the lower half

of the stages and most (67%) pre-HD B subjects to the

upper half of the stages.

Outliers appear in both the HC and HD groups, specifi-

cally one HC subject at stage 18 and the HD subjects at
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stages 0, 1, and 2. Closer inspection of these subjects sug-

gests their MRIs and regional volumes generally agree bet-

ter with those of opposite diagnosis, rather than, for

example, a single anomalous regional volume or image

processing error. The HC at stage 18 showed higher likeli-

hoods of being abnormal than normal with most of their

regional volumes agreeing better with P xijjEi
� �

than

P xijj:Ei
� �

. We note that the HC at stage 18 is 64.9 years

old, almost 2 standard deviations greater than the mean

HC age; this may explain the anomaly even after correcting

for age (which just represents a best fit across all subjects).

The HD outliers are assigned a stage less than four because

their putamen, caudate, and pallidum all have volumes in

the normal range (P xijj:Ei
� �

>P xijjEi
� �

). Visual inspection

confirms no significant parcellation errors, suggesting that

the positions of these subjects arise simply from the broad

heterogeneity of brain structure and disease manifestation.

Longitudinal consistency

The longitudinal consistency of the EBM staging system was

first tested using follow-up data from three consecutive

years. (Fig. 3A–C) show the EBM stages at baseline versus

the EBM stages at each follow-up (year 1, 2, and 3) along

with the bootstrapped positional variance in the event

sequence from (Fig. 1B). It confirms that the subject stages

generally increase, stay constant with time, or lie within

model uncertainty, as expected. At the final year only three

subjects regress more than a single stage from baseline; all of

these were at the final stage at baseline. Closer inspection

reveals that the small fluctuations in stage arise from the

fluctuation of estimated basal forebrain volumes at either

baseline or follow-up. These volumes are prone to causing

model error as the HC distribution’s standard deviation is

larger than that of the HD distribution (approximately a fac-

tor of 1.3). The additional follow-up data provided by the

TrackOn-HD study were included to provide a further

3 years of validation for most (91/120) of the premanifest

cohort. A generally increasing trend of stage with time was

observed, with 92% of patients staged greater than or equal

to their baseline stage at the final follow-up. Rounding up,

the average progression was three stages over 3 years in

TRACK-HD (n = 73) and six stages over 6 years in

TrackOn-HD (n = 35); average regression was two stages

over 3 years in TRACK-HD (n = 17) and two stages over

6 years in TrackOn-HD (n = 6). This indicates that patients

Figure 1. (A) Regional volume biomarker positional variance diagram. Dark diagonal components indicate strong event ordering, and lighter

indicate possible event permutations with strength proportional to the off-diagonal components. (B) Re-estimation of the positional variance for

100 bootstrap samples of the data. (C) Graphic representation of the event sequence showing the corresponding subcortical regions transitioning

from an initially healthy (grey) state to an unhealthy (red) state. To aid in visualization, the newly added region at each stage is colored in orange.
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progress at approximately one stage per year, and those who

regress in stage do so by a maximum of two stages, which is

within the uncertainty in the staging mechanism.

Prediction of conversion

The EBM can also be used to predict conversion from

pre-HD to HD status. We define true converters as

patients with a premanifest diagnosis at baseline and an

HD diagnosis at year 3 (no conversions were observed at

years 1 or 2), and predicted converters as patients with a

stage greater than a threshold EBM stage. The balanced

accuracy, which is the average of sensitivity and speci-

ficity, is then maximized over all stage thresholds. This

gives a maximum balanced accuracy of 65% (75% sensi-

tivity; 55% specificity) for predicting converters with a

baseline stage greater than 7. While this might not appear

particularly high, it is worth noting that only cross-sec-

tional imaging data were used to power this prediction.

By way of comparison, support vector machines (SVM)

with linear and nonlinear kernels were trained and tested

on the same pre-HD data. Due to the small number of

converters in the sample the SVM could not improve

beyond the baseline model of just predicting the same

class at follow-up as at baseline. This highlights the ability

of the EBM to draw useful predictive information using

only cross-sectional data. Furthermore, the predictive

power is likely to be increased by including longitudinal

information in the EBM, such as the rate of atrophy.10

Correlation with phenotypic markers

To further validate the EBM, the predicted stages for pre-

HD and HD subjects were plotted as a function of three

widely used clinical markers: the total motor score

(TMS), symbol digit modalities test (SDMT), and Stroop

test. (Fig. 4A) shows a scatter plot of TMS versus stage,

(Fig. 4B) the equivalent for SDMT, (Fig. 4C) the equiva-

lent for Stroop, and (Fig. 4D) the equivalent for CAP, for

each cohort separately. Ordinary least squares linear

regression was performed on the combined cohort in each

case, which showed significant gradients (P < 0.001) in

the expected directions: TMS (b = 0.98) and CAP

(b = 0.014) increase with increasing EBM stage, SDMT

(b = �1.0) and Stroop (b = �1.4) decrease with increas-

ing EBM stage. This demonstrates the potential clinical

relevance of EBM stages despite being estimated purely

from volumetric MRI data.

Figure 2. Distribution of subject stages: healthy controls (HC), premanifest A (pre-HD A), premanifest B (pre-HD B), and manifest (HD). The

proportion is with respect to the total of each group: HC, pre-HD A + pre-HD B, and HD.
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In addition to a means of validation, the linear mod-

els in (Fig. 4A–D) allow the EBM staging to be related

to potential thresholds for motor and cognitive onset.

Example thresholds are chosen to reflect values that

separate pre-HD and HD subjects according to the lon-

gitudinal data published by2: Figure 2. For thresholds of

TMS > 15, SDMT < 40, and Stroop < 100, the EBM

predicts motor and cognitive onset for subjects with

stage >13. This suggests that by the time of onset, the

archetypal subject already has abnormal putamen, cau-

date, pallidum, insula white matter, CSF, amygdala,

optic chiasm, and (with higher uncertainty) third ven-

tricle volumes. According to this model, the posterior

insula and basal forebrain transition to an abnormal

state after motor onset. It is interesting to note that

TMS demonstrates a threshold effect and is only sensi-

tive to changes in HD subjects, not pre-HD, that is,

the pre-HD data are approximately flat, while SDMT,

Stroop, and CAP track changes across both cohorts.

Mosaic plots representing these data are shown in

(Fig. 4E–H) for each phenotype, and show a clear split

in the population above or below each threshold. This

further substantiates the EBM as a potential method to

stratify subjects.

Discussion

We have presented a uniquely fine-grained model of tem-

poral progression of volume loss in premanifest and man-

ifest HD that is robust under cross-validation. The model

provides a novel method for prediction of conversion

using imaging data alone, and we have demonstrated that

the staging can stratify premanifest subjects according to

their predicted time to onset. We evidenced the utility of

the model via longitudinal validation, and showed that

patients consistently move to later stages with time.

Finally, we showed that the model staging is significantly

correlated with independent phenotypic markers, further

supporting the model as a potential tool to support fine-

grained stratification in HD. In the following sections we

discuss how the results compare to findings in the litera-

ture, where available.

Ordering of biomarkers

Our model places the putamen, caudate, and pallidum

before insula white matter (Fig. 1A), and overall predicts a

central-to-peripheral pattern of the subcortical spread (see

(Fig. 1C) for a visual representation). This is in agreement

Figure 3. Predicted stage at baseline versus predicted stage at 1 year (A), 2 years (B), and 3 years (C) for the manifest cohort in TRACK-HD.

Predicted stages are shown as red circles (area scaled by the number of entries at each point). The uncertainty in the event ordering – equal to

that of the bootstrapped EBM positional variance – is shown as a two-dimensional heatmap.

8 ª 2018 The Authors. Annals of Clinical and Translational Neurology published by Wiley Periodicals, Inc on behalf of American Neurological Association.

An Image-Based Model of HD P. A. Wijeratne et al.



Figure 4. (A) Total motor score (TMS) versus event-based model (EBM) stage plus linear model fit to both pre-HD and HD subjects; (B) Symbol

Digit Modalities Test (SDMT) versus EBM stage plus linear model fit to both pre-HD and HD subjects; (C) Stroop word reading test versus EBM

stage plus linear model fit to both pre-HD and HD subjects; (D) scaled CAP score versus EBM stage plus linear model fit to both pre-HD and HD

subjects; (E) TMS versus EBM stage brackets; (F) SDMT versus EBM stage brackets; (G) Stroop versus EBM stage brackets; (H) scaled CAP score

versus EBM stage brackets. All plots show data from the premanifest (pre-HD) and manifest (HD) groups. The mosaic plots (E–H) show the lower

y-axis bracket in solid color and the higher y-axis bracket in thatch, and the number of subjects in each bracket is proportional to its area.
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with recent work by27 who used change point linear regres-

sion based on a priori disease staging to estimate the initial

time of atrophy of structural MRI in the PREDICT-HD

dataset, and observed a central-to-peripheral pattern of

atrophy from the basal ganglia to deep white matter. The

model we present here is drawn from a broader spectrum

of stages in the patient cohort than in,27 facilitating a more

complete picture of the whole disease time course, and

avoids the confounds of a priori staging.

Our findings agree well with previous studies, where

available. The early involvement of the striatum is well

reported.28–30 Early changes in the basal ganglia nuclei –
here represented by the putamen, caudate, and pallidum

– are in agreement with previous observations in both

premanifest and manifest HD subjects using the TRACK-

HD dataset,24 and with other studies based on the puta-

men and caudate.29,30 Their ordering, however, has not

previously been observed: the EBM places the putamen

strongly ahead of the caudate and pallidum, even under

bootstrapping. Abnormalities in the insula white matter

and nonventricular CSF are identified by the EBM as

potential mid-stage biomarkers, the former of which is

also reported in the PREDICT-HD dataset,27 and agrees

with observations of white matter abnormality in preman-

ifest and manifest subjects.31–34

To our knowledge, no data exist on the relative position-

ing of the remaining brain volume biomarkers. CSF has

recently been associated with seeding aggregation of

mutant Huntingtin,35 and various components have been

posited for use as clinical biomarkers.36 The EBM then pre-

dicts changes in the amygdala, optic chiasm, and third ven-

tricle. The amygdala is topologically connected to the

caudate, but the literature concerning its involvement is

sparse; where it exists, it focuses on functional tests.37 The

optic chiasm is not expected to be pathologically involved

in the disease progression, but may undergo changes in vol-

ume due to the atrophy of surrounding tissues. Measure-

ments of the volume of the third ventricle by transcranial

sonography have shown that it is significantly larger in HD

patients than HCs.38 Finally, the EBM predicts the posterior

insula and basal forebrain as late-stage biomarkers. The

posterior insula has been shown to be functionally con-

nected to the striatum and motor cortex, both of which

were identified as displaying measurable atrophy in early

manifest HD.39 Involvement of the basal forebrain in HD is

not well reported in the literature, although its neuronal

connectivity to the cerebral cortex and amygdala has been

studied in relation to the cholinergic system.40

Ordering uncertainty

The uncertainty in the event ordering, given by the posi-

tional variance (Fig. 1A), is most effectively examined

using the bootstrapped positional variance diagram shown

in (Fig. 1B). These results demonstrate that even with an

overestimation of the uncertainty, the event ordering is

largely preserved. This is particularly noteworthy given

that the model is sensitive to a number of factors present

in the data, namely, disease heterogeneity, sampling den-

sity, and statistical outliers.10

The uncertainty of the relative positions of the caudate

and pallidum is high and their positions can effectively be

permuted. There are two possible explanations for this:

(1) that the events occur simultaneously or interchange-

ably across subjects; and (2) that our cohort does not

include subjects at stages that specify the ordering of these

regions. With respect to the pallidum, measurement error

may also be an issue, due to its small size.

Staging system

The EBM provides an intrinsic staging mechanism and

hence the means to correlate the model with clinical met-

rics. The uncertainty the assigned stage depends on (1)

the accuracy of a given subject’s biomarker measurement,

and (2) the degree of overlap between the healthy and

manifest distributions. Here, we have partially addressed

these factors by statistical testing: the former by removing

outliers using, for example, the 5-sigma cut noted earlier;

and the latter by requiring that the t-tests on the HC and

HD distributions have a large effect size. We are only

using imaging data here and hence expect high hetero-

geneity leading to outliers; as discussed earlier this is

observed in a small number of subjects. Despite this we

get strongly predictive staging performance from the

EBM: it successfully divides the pre-HD group into CAG-

and age-dependent subgroups defined by the TRACK-HD

study, can perform predictions of conversion using only

cross-sectional imaging data, and has good longitudinal

consistency over 6 years. There is still a degree of uncer-

tainty associated with each subject’s stage, however; this is

reflected in the longitudinal validation, which shows a

small number of subjects regressing from their baseline

stage.

The EBM presented here uses only image-based data,

thus allowing a noncircular relationship between imaging

and phenotypic markers to be established. The results

shown in (Fig. 4) suggest an intersection of quantitative

image-based stratification and traditional clinical-based

metrics. While the thresholds used here were chosen to

split pre-HD and HD subjects into separate groups, any

number of subgroups can be defined according to the

desired level of stratification. Given the variability in the

pre-HD subject stages (Fig. 2), this type of correlation

can provide insight into potential heterogeneity in clinical

trial groups.
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Limitations and future work

As noted in10, the EBM makes model assumptions that

must be considered when interpreting these results. The

strong assumption that the disease progression is homo-

geneous across the population is common in disease

progression modelling.6 While this assumption may not

be as much of a simplification in HD (which is caused

by a single genetic mutation) as it is in Alzheimer’s dis-

ease (which typically exhibits much greater heterogene-

ity), it is reasonable to assume that the complex cascade

of both damaging and compensatory events associated

with HD causes different pathologies. Despite the

assumption of a single pattern, which is likely to be

overly simplistic, the EBM demonstrates useful staging

capability, suggesting that at least some aspects of the

progression pattern are broadly shared by most patients.

Newer techniques such as subtype and stage inference42

potentially reveal distinct patterns and may provide even

greater predictive ability in the future. In addition, as

discussed by,42 the EBM assumes independence of

biomarkers, which can affect the estimation of biomarker

event distributions. Here, we have a well-defined HC

population and strongly separated means between the

HD and HC populations, allowing for good estimation

of the biomarker event distributions, so this effect should

be negligible.

The EBM has no time dependence and hence no expli-

cit time scale; it can therefore predict where a given sub-

ject is in the disease sequence, but not how long it has

taken to reach that stage. The advantage of this is that

the EBM requires only cross-sectional data, which

enhances its clinical utility. Here, we gave the EBM an

implicit time scale in a qualitative manner by correlating

the predicted stages with phenotypic markers; the time

course of a given subject’s total motor score, for example,

can be measured and related back to the staging. This is

only an approximation, and there are associated errors

with both the stage and phenotype.

To lend the disease progression an explicit time scale a

different model could be applied that utilizes longitudinal

data (see 44 for a more comprehensive review). Trajec-

tory-based models that are informed by patient data have

been proposed that employ linear mixed models44 or

quantile regression,45 with the latter allowing for non-

monotonic trajectories. However, these models require an

a priori definition of disease stage; in the cited examples,

this is expected age to onset and time to diagnosis,

respectively, both of which need to be estimated. In prac-

tice, these estimates are crude, for example, from parental

age of onset, which can lead to inaccuracy of the model.

Trajectory modeling without the need for a predefined

disease stage can be achieved using differential

equation models46,47 and self-modeling regression tech-

niques48 or Gaussian Processes.43 Such models provide

complete temporal pictures of disease progression at the

expense of requiring data from at least two time points to

parameterize.

Future work on validating the model across multiple

datasets will be valuable for translation to clinical prac-

tice. We plan to use data from the PREDICT-HD study

to test the model, as it represents a different cohort

and will allow us to probe the effects of population

variance. Furthermore, we will specify models to each

study separately and compare the predicted progression

patterns.

Conclusions

We have presented a data-driven model of brain volume

biomarker changes in Huntington’s disease that shows

good longitudinal consistency and potential clinical appli-

cability. The model proposes a characteristic sequence of

events with a strong ordering that provides insight into

Huntington’s disease progression and a potential tool for

patient stratification.

Acknowledgments

We thank the participants of both the TRACK-HD and

TrackOn-HD studies for their contribution to this

research. Data used in the preparation of this article were

provided by the TRACK-HD and TrackOn-HD consor-

tiums. The TRACK-HD and TrackOn-HD investigators

contributed to the design and implementation of

TRACK-HD and TrackOn-HD; see the Table S1 for infor-

mation about both studies’ investigators. The authors

from UCL received funding from the CHDI Foundation,

a not-for-profit organization dedicated to finding treat-

ments for Huntington’s disease, under grant A-9856, and

the European Union’s Horizon 2020 research and innova-

tion program under grant No. 666992. TRACK-HD and

TrackOn-HD were supported by the CHDI Foundation.

EBJ, RIS, and SJT receive funding from a Wellcome Trust

Collaborative Grant (200181/Z/15/Z).

Author contributions

PAW, ALY, NPO, and DCA conceived and designed the

study. All authors contributed to acquiring or analyzing

the data. PAW drafted the manuscript and figures.

Conflicts of Interest

The authors declare that there are no conflicts of interest

present in this work.

ª 2018 The Authors. Annals of Clinical and Translational Neurology published by Wiley Periodicals, Inc on behalf of American Neurological Association. 11

P. A. Wijeratne et al. An Image-Based Model of HD



References

1. Bates GP, Dorsey R, Gusella JF, et al. Huntington disease.

Nat Rev Dis Primers 2015;1:15005.

2. Ross CA, Aylward EH, Wild EJ, et al. Huntington disease:

natural history, biomarkers and prospects for therapeutics.

Nat Rev Neurol 2014;10:204–216.

3. The Huntington’s Disease Collaborative Research Group. A

novel gene containing a trinucleotide repeat that is

expanded and unstable on huntington’s disease

chromosomes. Cell 1993;72:971–983.

4. Paulsen JS, Langbehn DR, Stout JC, et al. Detection of

Huntington’s disease decades before diagnosis: the Predict-

HD study. J Neurol Neurosurg Psychiatry 2008;79:874–
880.

5. Tabrizi SJ, Langbehn DR, Leavitt BR, et al. Biological and

clinical manifestations of Huntington’s disease in the

longitudinal TRACK-HD study: cross-sectional analysis of

baseline data. Lancet Neurol 2009;8:791–801.

6. Oxtoby NP, Alexander DC. Imaging plus X: multimodal

models of neurodegenerative disease. Curr Opin Neurol

2017;30:371–379.

7. Jack CR, Knopman DS, Jagust WJ, et al. Hypothetical

model of dynamic biomarkers of the Alzheimer’s

pathological cascade. Lancet Neurol 2010;9:119–128.
8. Fonteijn HM, Modat M, Clarkson MJ, et al. An event-

based model for disease progression and its application in

familial Alzheimer’s disease and Huntington’s disease.

NeuroImage 2012;60:1880–1889.
9. Georgiou-Karistianis N, Scahill R, Tabrizi SJ, et al.

Structural MRI in Huntington’s disease and

recommendations for its potential use in clinical trials.

Neurosci Biobehav Rev 2013;37:480–490.
10. Young AL, Oxtoby NP, Daga P, et al. A data-driven model

of biomarker changes in sporadic Alzheimer’s disease.

Brain 2014;137:2564–2577.

11. Young AL, Marinescu RV, Oxtoby NP, et al. Multiple

distinct atrophy patterns found in genetic

frontotemporal dementia using subtype and stage

inference (SuStaIn). Multiple distinct atrophy patterns

found in genetic frontotemporal dementia using

subtype and stage inference (sustain). Alzheimers

Dement. 2017;13:P453–P454; https://doi.org/10.1016/j.ja
lz.2017.06.2352.

12. Young J, Modat M, Cardoso MJ, et al. Accurate

multimodal probabilistic prediction of conversion to

Alzheimer’s disease in patients with mild cognitive

impairment. Neuroimage Clin 2013;2:735–745.

13. Mattila J, Koikkalainen J, Virkki A, et al. A disease state

fingerprint for the evaluation of Alzheimer’s disease. J

Alzheimer’s Dis 2014;27:163–176.
14. Tabrizi SJ, Scahill RJ, Owen G, et al. Predictors of

phenotypic progression and disease onset in premanifest

and early-stage Huntington’s disease in the TRACK-HD

study: analysis of 36-month observational data. Lancet

Neurol 2013;12:637–649.

15. Aylward EH, Nopoulos PC, Ross CA, et al. Longitudinal

change in regional brain volumes in prodromal

Huntington disease. J Neurol Neurosurg Psychiatry

2011;82:405–410.
16. Kloppel S, Gregory S, Scheller E, et al. Compensation in

preclinical Huntington’s disease: evidence from the

TrackOn-HD HD study. EbioMedicine 2015;2:1420–1429.

17. Cardoso MJ, Modat M, Wolz R, et al. Geodesic

information flows: spatially-variant graphs and their

application to segmentation and fusion. IEEE Trans Med

Imaging 2015;34:1976–1988.

18. Johnson EB, Gregory S, Johnson HJ, et al.

Recommendations for the use of automated gray matter

segmentation tools: evidence from Huntington’s disease.

Front Neurol 2017;8:519.

19. Perlaki G, Horvath R, Nagy SA, et al. Comparison of

accuracy between FSL’s FIRST and Freesurfer for caudate

nucleus and putamen segmentation. Sci Rep 2017;7:2418.

20. M€uhlau M, Gaser C, Wohlschl€ager AM, et al. Striatal gray

matter loss in Huntington’s disease is leftward biased. Mov

Disord 2007;22:1169–1173.

21. Huntington Study Group. Unified huntington’s disease

rating scale: reliability and consistency. Mov Disord

1996;11:136–142.
22. Smith A. Symbol Digit Modalities Test. Los Angeles:

Western Psychological Services, 1991.

23. Paulsen JS. Cognitive impairment in Huntington Disease:

Diagnosis and Treatment. Curr Neurol Neurosci Rep

2011;11:474–483.

24. Zhang Y, Long JD, Mills JA, et al. Indexing disease

progression at study entry with individuals at-risk for

Huntington disease. Am J Med Genet B Neuropsychiatr

Genet 2012;156:751–763.

25. van den Bogaard SJA, Dumas EM, Ferrarini L, et al. Shape

analysis of subcortical nuclei in Huntington’s disease,

global versus local atrophy–results from the TRACK-HD

study. J Neurol Sci 2011;307(1–2):60–68.
26. Hobbs NZ, Cole JH, Farmer RE, et al. Evaluation of

multi-modal, multi-site neuroimaging measures in

Huntington’s disease: Baseline results from the

PADDINGTON study. Neuroimage Clin 2013;2:204–211.
27. Langbehn DR, Brinkman RR, Falush D, et al. A new

model for the prediction of the age of onset and

penetrance for Huntington’s disease based on CAG length.

Clin Genet 2004;65:267–277.
28. Wu D, Faria AV, Younes L, et al. Mapping the order and

pattern of brain structural MRI changes using change-

point analysis in premanifest Huntington’s disease. Hum

Brain Mapp 2017;. https://doi.org/10.1002/hbm.23713.

29. Rosas HD, Goodman J, Chen YI, et al. Striatal volume loss

in HD as measured by MRI and the influence of CAG

repeat. Neurology 2001;57:1025–1028.

12 ª 2018 The Authors. Annals of Clinical and Translational Neurology published by Wiley Periodicals, Inc on behalf of American Neurological Association.

An Image-Based Model of HD P. A. Wijeratne et al.

https://doi.org/10.1016/j.jalz.2017.06.2352
https://doi.org/10.1016/j.jalz.2017.06.2352
https://doi.org/10.1002/hbm.23713


30. Aylward EH, Sparks BF, Field KM, et al. Onset and rate of

striatal atrophy in preclinical Huntington disease.

Neurology 2004;63:66–72.
31. Sanchez-Castaneda C, Cherubini A, Elifani F, et al. Seeking

Huntington disease biomarkers by multimodal, cross-

sectional basal ganglia imaging. Hum Brain Mapp

2017;43:1625–1635.

32. Paulsen JS, Magnotta VA, Mikos AE, et al. Brain structure

in preclinical Huntington’s disease. Biol Psychiatry

2006;59:57–63.
33. Paulsen JS, Nopoulos PC, Aylward E, et al. Striatal and

white matter predictors of estimated diagnosis for

Huntington disease. Brain Res Bull 2010;82:201–207.

34. Tabrizi SJ, Scahill RI, Durr A, et al. Biological and clinical

changes in pre-manifest and early stage Huntington’s

disease in the TRACK-HD study: the 12-month

longitudinal analysis. Lancet Neurol 2011;10:31–42.

35. Tabrizi SJ, Reilmann R, Roos RA, et al. Potential endpoints

for clinical trials in premanifest and early Huntington’s

disease in the TRACK-HD study: analysis of 24 month

observational data. Lancet Neurol 2012;11:42–53.

36. Tan Z, Dai W, van Erp TG, et al. Huntington’s disease

cerebrospinal fluid seeds aggregation of mutant huntingtin.

Mol Psychiatry 2015;20:1286–1293.
37. Byrne LM, Wild EJ. Cerebrospinal fluid biomarkers for

Huntington’s Disease. J Huntington’s Dis 2016;5:1–13.
38. Mason SL, Zhang J, Begeti F, et al. The role of the

amygdala during emotional processing in Huntington’s

disease: from pre-manifest to late stage disease.

Neuropsychologia 2015;70:80–89.
39. Krogias C, Strassburger K, Eyding J, et al. Depression in

patients with Huntington disease correlates with

alterations of the brain stem raphe depicted by transcranial

sonography. J Psychiatry Neurosci 2011;36:187–194.
40. Dogan I, Eickhoff CR, Fox PT, et al. Functional

connectivity modeling of consistent cortico-striatal

degeneration in Huntington’s disease. Neuroimage Clin

2015;7:640–652.
41. D’Souza GX, Waldvogel HJ. Targeting the cholinergic

system to develop a novel therapy for Huntington’s

disease. J Huntingtons Dis 2016;5:333–342.

42. Young AL, Marinescu RV, Yong K, et al. Characterising

the progression of Alzheimer’s disease subtypes using

subtype and stage inference (SuStaIn). Alzheimers Dement

2017;13:p116–p117. https://doi.org/10.1016/j.jalz.2017.06.

2529

43. Young AL, Oxtoby NP, Ourselin S, et al. A simulation

system for biomarker evolution in neurodegenerative

disease. Med Image Anal 2015;26:47–56.
44. Lorenzi M, Filippone M, Frisoni GB, et al. Probabilistic

disease progression modeling to characterize diagnostic

uncertainty: Application to staging and prediction in

Alzheimer’s disease. NeuroImage 2017;. https://doi.org/10.

1016/j.neuroimage.2017.08.059.

45. Bateman RJ, Xiong C, Benzinger TL, et al. Clinical and

biomarker changes in dominantly inherited Alzheimer’s

disease. N Engl J Med 2012;367:795–804.
46. Schmidt-Richberg A, Ledig C, Guerrero R, et al. Learning

biomarker models for progression estimation of

Alzheimer’s disease. PLoS ONE 2016;11:e0153040.

47. Oxtoby NP, Young AL, Lorenzi M, et al. Initiative TADN.

Learning imaging biomarker trajectories from noisy

Alzheimer’s disease data using a Bayesian multilevel

model. BAMBI Lect Notes Comput Sci 2014;8677:85–94.

48. Villemagne VL, Burnham S, Bourgeat P, et al. Amyloid b

deposition, neurodegeneration, and cognitive decline in

sporadic Alzheimer’s disease: a prospective cohort study.

Lancet Neurol 2013;12:357–367.

Supporting Information

Additional Supporting Information may be found online

in the supporting information tab for this article:

Figure S1. HC (green) and HD (red) volume biomarker

distributions, and corresponding mixture model fits. Note

that the volumes are covariate corrected.

Table S1. Percentage change in mean volumes and

thresholds between healthy control (HC) and manifest

(HD) regional brain volume distributions, after control-

ling for covariates (age, site, and total intracranial vol-

ume).
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