155 research outputs found

    Alzheimer Disease Detection of 3D-CNN with SE-Net Model using SVM Classifier

    Get PDF
    Alzheimer disease is a fatal progressive neurological brain disorder. Earlier detection of Alzheimer's disease can help with proper treatment and prevent brain tissue damage. In this work we proposed two methods. First, proposed connected median filter using PSO feature extraction from MRI images and Analysis of Alzheimer’s diseases state by using 3D-CNN based SE-Net. In the first phase, the algorithm first normalizes and removes skull from the MRI images. Connected median filter using Particle Swarm Optimization algorithm is used to partition the image into white matter (WM), grey matter (GM) and black holes (BH). The relevant diagnostic features are extracted from the segmented image component. The classifier is trained by the training data to predict the test data. The features are defined to construct classification model by using Support Vector Machine with Squeeze- Excitation block. Here, database contains total of 1000 images which are resized into 350 × 350 without loss of information. Deep Learning demands large number of images and its strength was increased as per requirement by augmentation technique. In the first phase of the method takes 1000 images of different features are selected to train SVM classifier and the accuracy obtained is 98.37%  and contribution of this work is classification of images into categories such as Alzheimer (AD) and normal. First phase of work emphasized program specific applications to extract features.  In the second phase the CNN multiple layers which are studied from lower level to the higher-level image characteristics

    Cytocompatibility and Dielectric Properties of Sr2+ Substituted Nano-Hydroxyapatite for Triggered Drug Release

    Get PDF
    Hydroxyapatite (Ca5(PO4)3OH) is a well-known bioceramics material used in medical applications because of its ability to form direct chemical bonds with living tissues. In this context, we investigate the biocompatibility and dielectric properties of Sr2+-substituted hydroxyapatite nanoparticles were synthesized by sol-gel method. The influence of strontium on the crystal structure, functional group, morphological, electrical properties, and biocompatibility of as-synthesized nano-hydroxyapatite samples was analyzed using X-ray diffraction (XRD), Fourier transform infrared (FTIR) spectroscopy and field emission scanning electron microscopy (FE-SEM). Dielectrical properties of the bioactive Sr-HA sample were investigated by a dielectric impedance spectroscopy method. The observed results illustrate the incorporation of Sr2+ ions in the apatite lattice could influence the pure HA properties, by reducing the crystallite size and crystallinity quite consistent with the morphology variation. The ac conductivity (σac) increased with an increasing applied frequency confirmed that prepared HA sample exhibited the universal power law nature. Further, the in vitro drug loading and release studies using doxycycline as a model drug demonstrate that the Sr2+ -HA nanoparticles show high drug adsorption capacity and sustained drug release. Thus, the improved bioceramics system could be a promising candidate for future biomedical applications

    Mucoepidermoid carcinoma of eyelid – An unusual site: a case report

    Get PDF
    Mucoepidermoid carcinoma is predominantly a malignancy of the major salivary glands (10-30%) and minor salivary glands (15%).These tumours are also reported in lacrimal glands, conjunctiva, and nasopharynx, though rarely. The average age at presentation is between 20 to 60 years with a female preponderance. Owing to the rarity, it mandates an early diagnosis to facilitate appropriate patient management. This case report highlights the unusual occurrence of primary mucoepidermoid carcinoma of the eyelid in a 33 year old male patient

    Molecular identification of diarrheal Aeromonas using immuno magnetic polymerase chain reaction (IM-PCR) technique: a comparative study with conventional culture method

    Get PDF
    Background: Aeromonas are ubiquitous bacteria causing many clinical conditions including acute diarrhea. Diarrheagenic Aeromonas harbors aerolysin gene secreting virulent enterotoxin, aerolysin.Objectives: To develop a molecular and immunological based method for detection of Aeromonas.Methods: Diarrheal Aeromonas strains were identified from stool samples using culture, enterotoxicity testing using mice model. During immune magnetic polymerase chain reaction IM-PCR protocol, aerolysin specific antibodies were bound with immuno magnetic binding. Sensitivity and specificity tests for IM-PCR were conducted.Results: There was high detection of Aeromonas using IM-PCR (12.4 %) technique when compared to low isolation with culture (5.1%). Our study confirmed that some strains of enterotoxic Aeromonas strains were uncultivable. Enterotoxicity tests on culture isolates revealed many strains were negative. IM-PCR detected high, (62/500) rate of identification of Aeromonas with aerolysin toxin gene. Aeromonas species identified after IM-PCR were A. hydrophila (40.3% ), A. veronii (17.7 %), A. caviae (14.5%), A. trota (11.2 %), A. jandei (9.6 %) and A. schuberti (6.4%). All A. trota strains were undetected by cultivation.Conclusion: High sensitivity and specificity of IM-PCR are due to preparation of aerolysin antibodies and immuno magnetic binding, prior to PCR. Since diseases due to Aeromonas are increasingly reported, IM-PCR is recommended for detection from clinical specimens.Keywords: Aeromonas, IM-PCR, acute diarrhea, aerolysin, enterotoxicity

    Designing piezoelectric nanogenerator from PVDFHFP nanocomposite fibers containing cellulose nanocrystals and Fedoped ZnO

    Get PDF
    Self-powering devices harvest energy from the environment and perform based on a maintenance free approach. These materials are of utmost significance as they solve the problems associated with the energy crisis and management, to greater extends. Advances in material science and the design of various polymer nanocomposites developed many self-powering devices that are flexible, sensitive, less power consuming and of low cost. The semi-crystalline polymer, poly vinylidene fluoride (PVDF) and its co-polymers are notable for mechanical energy harvesting because of the typical crystalline phases in their structure. Various nanoparticles are added to such polymers to enhance their dielectric and piezoelectric properties as well. Since the alignment of crystalline phases improve the energy harvesting properties, techniques such as electrical poling are practiced to enhance their applicability. Among various alignment procedures, electrospinning stands as unique since the high voltage applied to the polymer solution generates nanofiber scaffolds in perfect alignments. The present work aims to develop electrospun composite fibers in nano-dimensions for designing self-powering nanogenerators. The co-polymer of PVDF, polyvinylidene fluoride hexa fluoropropylene (PVDF-HFP) was used as the base polymer and the iron-doped zinc oxide (Fe-ZnO) and cellulose nanocrystals (CNC) as the filler reinforcements. Fe-ZnO nanostructures were obtained by hydrothermal synthesis method from the ZnO precursor, while the CNC were synthesized following the acid hydrolysis of cellulose microfibers. The optimized concentration of 20 wt.% was used for obtaining the electrospun fibers of neat PVDF-HFP and various concentrations of nanoparticles were mixed with this base solution. Simple solvent mixing was employed using the acetone/DMF solvent mixture to prepare the composite solutions prior to electrospinning. The electrospinning conditions were also optimized by varying the applied voltage, tip to collector distance and speed of the rotating collector. Nice fibers were obtained at a voltage of 12-13 eV and rotating collector speed of 200 rpm. Composites of CNC with PVDF-HFP, Fe-ZnO with PVDF-HFP and the hybrid material of CNC/Fe-ZnO with PVDF-HFP were prepared and properties were investigated. All the fibers were tested for the morphology, structural, thermal and dielectric properties. The mechanical energy harvesting was performed using an assembled set up containing a frequency generator, shaker and data acquisition system. At 2 wt. % of the nanofillers, the PVDF-HFP/CNC generated about 2 V, the PVDF-HFP/Fe-ZnO generated about 4 V and the hybrid nanocomposite containing both nanoparticles generated about 6 V. The filler synergy plays a major role in regulating the material properties and here the combined effect of the piezoelectric performance of the cellulose nanocrystals and the modified ZnO nanoparticles enhanced the mechanical energy harvesting capability of the final nanocomposite. A nanogenerator is designed based on the developed polymer nanocomposite fibers and the piezoelectric performance on various conditions of stretching, pressing and twisting were also investigated. In all the cases the hybrid composite showed notable performance substantiating its application in designing self-powered nanogenerators. The dielectric properties of the hybrid material showed many fold increase in its dielectric constant, making it useful in electrical energy storage. In short, the designed device by electrospinning technique is highly useful in adding to the energy management and is environmentally safe and of good efficiency.qscienc

    Comparative Study on Gas-Sensing Properties of 2D (MoS2, WS2)/PANI Nanocomposites-Based Sensor

    Get PDF
    NH3 is a highly harmful gas; when inhaled at levels that are too high for comfort, it is very dangerous to human health. One of the challenging tasks in research is developing ammonia sensors that operate at room temperature. In this study, we proposed a new design of an NH3 gas sensor that was comprised of two-dimensional (TMDs, mainly WS2 and MoS2) and PANI. The 2D-TMDs metal was successfully incorporated into the PANI lattice based on the results of XRD and SEM. The elemental EDX analysis results indicated that C, N, O, W, S and Mo were found in the composite samples. The bandgap of the materials decreased due to the addition of MoS2 and WS2. We also analyzed its structural, optical and morphological properties. When compared to MoS2 and PANI, the proposed NH3 sensor with the WS2 composite was found to have high sensitivity. The composite films also exhibited response and recovery times of 10/16 and 14/16 s. Therefore, the composite PANI/2D-TMDs is a suitable material for NH3 gas detection applications.This work is supported by the Qatar National Research Fund (Project number UREP 25-057-2-023). The funding achieved herein are solely the responsibility of the autors. The characterizations of this work are accomplished in the Central Laboratories Unit, Qatar University

    Liquid exfoliated MoS2 sheet coupled with conductive polyaniline for gas sensor

    Get PDF
    Polyaniline (PANI)/MoS2 composites with porous microspheres were prepared by a hydrothermal and in situ polymerization method. The structural, optical, and morphological properties were characterized by X-ray powder diffraction, FTIR, scanning electron microscope, transmission electron microscope. The XRD results confirmed that the PANI/MoS2 composite was formed. Morphological characterization reveals that the successful formation of few to multilayered MoS2 nanosheet intercalated with the PANI nanoparticles

    Synthesis and photoelectrochemical performance of Co doped SrTiO3 nanostructures photoanode

    Get PDF
    It is pertinent to realize that scientific research indicates that the most promising method for producing H2 is photo electrochemical water splitting through a photo anode. Cobalt-doped SrTiO3 (Co-SrTiO3) composite nanostructures were created in this study via hydrothermal synthesis. The impact of cobalt concentration change on Co-SrTiO3 has been identified using morphological, structural, and photo electrochemical research. Surface morphology of pure SrTiO3 nanoparticles using SEM and TEM reveals that the particles are intermittently agglomerated. The inclusion of Cobalt lowered the particle size of the nanostructures to 23 nm than pure SrTiO3 (41 nm). In addition, the peak profile has been influenced by cubic phase also identified from the x-ray diffraction analysis. The purity and composition of the materials were revealed by XPS analysis. The Co-SrTiO3 composite's produced the best charge transfer and recombination capabilities at 3% Co doping, according to electrochemical chemical impedance (EIS) spectroscopy. At 0.2 V applied potential, the obtained 3% Co-doped SrTiO3 photoanode system displays a photocurrent density of around 3.45 mA/cm2. The outcomes show that a promising application for the Co-doped SrTiO3 photoanode in photoelectrochemical water splitting.This publication was made possible by the support of an Qatar University Internal Grant (QUCG-CAM-20/21-6). The statements made herein are solely the responsibility of the authors. The characterizations of this work are accomplished in the Gas Processing Unit and in the Centra Laboratory Unit, at Qatar University

    Malignant phyllodes tumors display mesenchymal stem cell features and aldehyde dehydrogenase/disialoganglioside identify their tumor stem cells

    Get PDF
    INTRODUCTION: Although breast phyllodes tumors are rare, there is no effective therapy other than surgery. Little is known about their tumor biology. A malignant phyllodes tumor contains heterologous stromal elements, and can transform into rhabdomyosarcoma, liposarcoma and osteosarcoma. These versatile properties prompted us to explore their possible relationship to mesenchymal stem cells (MSCs) and to search for the presence of cancer stem cells (CSCs) in phyllodes tumors. METHODS: Paraffin sections of malignant phyllodes tumors were examined for various markers by immunohistochemical staining. Xenografts of human primary phyllodes tumors were established by injecting freshly isolated tumor cells into the mammary fat pad of non-obese diabetic-severe combined immunodeficient (NOD-SCID) mice. To search for CSCs, xenografted tumor cells were sorted into various subpopulations by flow cytometry and examined for their in vitro mammosphere forming capacity, in vivo tumorigenicity in NOD-SCID mice and their ability to undergo differentiation. RESULTS: Immunohistochemical analysis revealed the expression of the following 10 markers: CD44, CD29, CD106, CD166, CD105, CD90, disialoganglioside (GD2), CD117, Aldehyde dehydrogenase 1 (ALDH), and Oct-4, and 7 clinically relevant markers (CD10, CD34, p53, p63, Ki-67, Bcl-2, vimentin, and Globo H) in all 51 malignant phyllodes tumors examined, albeit to different extents. Four xenografts were successfully established from human primary phyllodes tumors. In vitro, ALDH(+) cells sorted from xenografts displayed approximately 10-fold greater mammosphere-forming capacity than ALDH(-) cells. GD2(+) cells showed a 3.9-fold greater capacity than GD2(-) cells. ALDH(+)/GD2(+)cells displayed 12.8-fold greater mammosphere forming ability than ALDH(-)/GD2(-) cells. In vivo, the tumor-initiating frequency of ALDH(+)/GD2(+) cells were up to 33-fold higher than that of ALDH(+) cells, with as few as 50 ALDH(+)/GD2(+) cells being sufficient for engraftment. Moreover, we provided the first evidence for the induction of ALDH(+)/GD2(+) cells to differentiate into neural cells of various lineages, along with the observation of neural differentiation in clinical specimens and xenografts of malignant phyllodes tumors. ALDH(+) or ALDH(+)/GD2(+) cells could also be induced to differentiate into adipocytes, osteocytes or chondrocytes. CONCLUSIONS: Our findings revealed that malignant phyllodes tumors possessed many characteristics of MSC, and their CSCs were enriched in ALDH(+) and ALDH(+)/GD2(+) subpopulations

    Incident type 2 diabetes attributable to suboptimal diet in 184 countries

    Get PDF
    The global burden of diet-attributable type 2 diabetes (T2D) is not well established. This risk assessment model estimated T2D incidence among adults attributable to direct and body weight-mediated effects of 11 dietary factors in 184 countries in 1990 and 2018. In 2018, suboptimal intake of these dietary factors was estimated to be attributable to 14.1 million (95% uncertainty interval (UI), 13.8–14.4 million) incident T2D cases, representing 70.3% (68.8–71.8%) of new cases globally. Largest T2D burdens were attributable to insufficient whole-grain intake (26.1% (25.0–27.1%)), excess refined rice and wheat intake (24.6% (22.3–27.2%)) and excess processed meat intake (20.3% (18.3–23.5%)). Across regions, highest proportional burdens were in central and eastern Europe and central Asia (85.6% (83.4–87.7%)) and Latin America and the Caribbean (81.8% (80.1–83.4%)); and lowest proportional burdens were in South Asia (55.4% (52.1–60.7%)). Proportions of diet-attributable T2D were generally larger in men than in women and were inversely correlated with age. Diet-attributable T2D was generally larger among urban versus rural residents and higher versus lower educated individuals, except in high-income countries, central and eastern Europe and central Asia, where burdens were larger in rural residents and in lower educated individuals. Compared with 1990, global diet-attributable T2D increased by 2.6 absolute percentage points (8.6 million more cases) in 2018, with variation in these trends by world region and dietary factor. These findings inform nutritional priorities and clinical and public health planning to improve dietary quality and reduce T2D globally.publishedVersio
    • …
    corecore